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ABSTRACT O F  THE DISSERTATION 

Dynamics of Flexible Gravity-Gradient Satellites 
by 

Gordon Stamm Reiter 
Doctor of Philosophy in Engineering 

University of California, Los Angeles, 1965 

Professor  William T. Thomson, Chairman 

Three specific problems relating to flexible gravity gradient 

satellites in circular orbit a r e  examined: 

A. The stability of infinitesimal and noninfinitesimal ampli- 

tude angular motions for a class  of flexible satellites 

Static behavior of long w i r e s  and rods attached to 

satellites 

B. 

C. Pitch libration of a wire satellite. 

In the first problem, the linearized stability analysis of Debra and 

Delp for rigid satellites i s  extended to a class  of flexible satellites. 

The class  of satellites studied i s  selected for easy comparison of rigid 

and flexible satellite behavior over a wide range of inertia ratios. It is 

found that a significant range of inertia configurations which i s  stable 

for a rigid body is unstable fo r  a flexible body with damping. 

The problem of whether planar librations in the orbit plane a r e  

stable for finite amplitudes of motion, studied by Kane for the rigid 

satellite, is examined for a class of flexible satellites. It i s  found 

that the inertia configurations for which finite, purely planar pitch 

motion i s  unstable, found by Kane for the rigid satellite, have 
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counterparts in the case of a flexible satellite. 

configurations a r e  located through a perturbation solution of the equa- 

tions of motion. Numerical studies show that addition of damping does 

not always remove the instability, even for very flexible satellites and 

The unstable inertia 

small  (one degree) libration amplitudes. 

Kane is therefore a physically realist ic one and shows that linear 

analysis is not adequate for all cases.  

The phenomenon found by 

In the second problem, the static behavior of flexible satellite 

appendages is examined on a preliminary basis. 

deflection beam theory is required if satellite appendages a r e  suffi- 

ciently long. 

computed for various tip masses.  

vibration of a beam and its  static deflection under differential gravity 

is pointed out and discussed. 

It is found that large- 

The nonlinear deflection of a cantilever appendage is 

An analogy between the forced 

In the third problem, the planar pitching motion of a passive re -  

flector satellite in the shape of a long wire is examined. 

that elastic and rigid-body motion a r e  not coupled in the linearized 

equations of motion. 

of damped elastic motion appears feasible if the wire is sufficiently. 

long. 

It is found 

Libration damping through parametr ic  excitation 
I 
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Chapter 1. Introduction 

Gravity- gradient stabilization is  the technique of using the ea r th ' s  

gravitational field to produce restoring moments on a satellite and give 

the satellite a preferred orientation. A gravity- stabilized satellite has 

a nominally vertical orientation, which is very desirable for such mis- 

sions a s  communications, surveillance and weather observation. A 

vertically-oriented communications satellite has several  t imes the 

channel capacity of a spin- stabilized satellite for the same radiated 

power. 

Feasibility of the gravity-gradient concept has been established by 

several  flight tes ts  (References 1 .  1 and 1.2). 

take place in the next few years.  

studied for many years in ccr?r?ecti~r: with the know-ii orientation of tne 

moon. The f i r s t  work on artificial gravity-gradient satell i tes,  begin- 

ning about 1953, dealt principally with simple rigid-body satellites. 

The behavior of a rigid satellite in an inverse square force field is now 

fairly well understood. 

Many more flights will 

The gravity-gradient effect has  been 

Most realist ic gravity-gradient satell i tes a r e  structurally flexible. 

There a r e  two reasons: 

A. 

B. 

The gravity-gradient concept calls for very large 

moments of inertia. Large amounts of inertia a r e  

achieved by deploying space s t ructures  which a r e  re la -  

tively flimsy by earth standards. 

Significant flexibility is  needed to provide damping. The 

ear th 's  gravity field is  conservative, providing a r e s to r -  

ing moment, but no damping. Damping must be 

1 
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incorporated in all practical  satellite configurations, 

either by creating an interaction between the satellite and 

the earth 's  magnetic field (References 1 . 2  and 1.3) or  by 

introducing energy dissipation in a flexible par t  of the 

satellite, a concept f i r s t  suggested by Roberson and 

Breakwell in 1953 (Reference 1.4). 

remove energy associated with the angular motion of the 

satellite resulting from injection into orbit ,  l imit  steady- 

state oscillations produced by solar radiation p res su re  

and other disturbance torques,  and remove transients 

produced by disturbances, such a s  micrometeorite 

impacts. 

Damping serves  to 

The present discussion will  exclude two important categories of 

gravity-gradient satellites: those which a r e  actively damped by such 

means a s  gas  jets o r  reaction wheels, and those which obtain damping 

through interaction with the earth's magnetic field. 

The study of a flexible gravity-gradient satellite having given 

geometry, but varying inertia parameters ,  is  a relatively complex 

task. 

moments of inertia or  two dimensionless inertia ratios. To describe 

a flexible body, one must specify not only the inertia distribution, but 

also the distribution of stiffness and damping within the satellite. 

A rigid body i s  completely characterized by three principal 

As shown in Chapter 3 ,  the small  motions of a rigid body about i ts  

equilibrium (vertical) orientation a r e  described by a second-order 

equation and a set  of two coupled second-order equations, constituting 

a fourth-order system. Introduction of even one flexible-body degree 
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of freedom in a realistic way wil l  ra ise  the order  of the system to 

sixth-order,  with resultant increase in complexity. 

Typical current  papers in the field (References 1 .5  and 1.6) con- 

cern the optimization of a particular satellite configuration (preselected 

hinge location, planes of symmetry, etc. ) by variations of the moments 

of inertia and hinge spring torque. 

There is  much work still to be done in the area.  For  example, the 

question of what is  the best  gravity-gradient satellite which is  in the 

form of two rigid bodies connected by a single spring and dashpot has 

still not been completely resolved. 

The present dissertation, then, i s  in a broad field inwhichvery in- 

complete knowledge exists. 

by the principles: 

The approach taken can be characterized 

0 If general problems a r e  too complex, t ry  special cases  

and attempt inferences f rom them. 

Attempt extensions f rom topics which a r e  better under- 

stood. Specifically, in the present  case,  t ry  to see the 

ways a flexible body differs from a rigid body. 

0 

Three specific problems have been studied. They a r e  described 

briefly and conclusions a re  summarized in the following section. Each 

problem is covered in depth in a succeeding chapter. They a r e  con- 

nected only by being parts of the general subject area:  flexible gravity- 

gradient satellites. 

The chapters may be read independently of one another. The only 

convention employed is  the usual one: that dots above symbols denote 

derivatives with respect to time. 



Chapter 2. Problem Descriptions 

2.  1 Infinitesimal and Noninfinitesimal Amplitude Stability 
of a Class of Flexible Satellites (Chapter 3) 

2 .  1. 1 Problem Statement 

This problem i s  the extension to a flexible satellite of two stability 

problems which have been studied for  a rigid satellite in a circular orbit. 

The equations of motion f o r  a rigid satellite in a gravity field have 

been derived by many authors (Reference 3 . 2 ,  for  example). The basic 

equations a r e  derived in Appendices A and B. Basically, they show 

that: 

A. Small angular motion about an axis normal  to the plane of 

the orbit i s  described by a single equation, uncoupled for 

small  motions from the other degrees of freedom. The 

equations of so-called "pitch" motion i s  that of a simple 

pendulum. The body can therefore execute oscillations in 

pitch about the local vertical. 

B. The other two degrees of freedom ( ro l l  and yaw), repre-  

senting rotations about the tangent to the orbit  and the 

vertical, respectively, a r e  described for small  angles 

by two coupled second-order equations forming a fourth- 

order  system. 

C. Certain inertia configurations a r e  "stable" in the sense 

that the linearized equations of motion predict that small  

initial angular displacements do not grow indefinitely 

with time, but remain bounded. 

4 
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The f i rs t  part  of this problem is  the determination of the inertia 

configuration of a particular class of flexible bodies which result  in 

stability in the sense of the linearized equations. 

considered is selected to allow ready comparison with rigid-body 

behavior. 

The class of bodies 

A recent paper by Kane (Reference 3.4) has considered the com- 

bination of noninfinitesimal amplitude pitching motion and infinitesimal 

roll-yaw motion. By retaining the pitch angle as a large angle, he in- 

troduced additional te rms  in the roll-yaw equations. 

studies showed that the additional t e rms ,  for certain body inertia con- 

figurations, result in a roll-yaw motion which (in the linearized case) 

increases without bound. 

alone for these inertia configurations. 

Numerical 

Thus, pure pitching motion cannot exist 

Since Kane found pure pitching motion to be unstable for pitch 

amplitudes a s  small as one degree, the important conclusion can be 

drawn that, for  a rigid body, use of the linearized equations may give 

r i s e  to incorrect results.  

In the second par t  of this problem, Kane's technique i s  extended 

and used to t reat  the problem of stability of pure pitch motion for a 

flexible body which is similar to an unstable rigid body. 

method can it be determined whether the instability problem is practi-  

cally realizable o r  whether i t  disappears when realist ic flexibility and 

damping a r e  introduced. 

Only by this 



6 

2.1.2 Conclusions 

Infinite simal- Amplitude Stability of Flexible Satellites 

1. For the case where the flexible satellite has no integral damp- 

ing, the stability behavior resembles that of a rigid satellite. 

The differences can, in general, be easily explained on a 

physical basis.  

The introduction of damping causes a relatively large se t  of 

inertia configurations, stable for a rigid satellite, to become 

unstable. 

2.  

The remaining category, stable satellites which derive damping 

from internal flexibility, i s  an important one because of the grea t  ad- 

vantages in simplicity and reliability. 

Stability of Noninfinitesimal Pitching Motion 

1. 

2. 

3 .  

4. 

The inertia configurations found by Kane for which pure pitch- 

ing motion i s  unstable can be located rather precisely by a 

perturbation solution of the equations of motion. 

The technique of locating potentially unstable configurations 

can be extended to the case of a flexible satellite and used to 

limit the number of parameters which must be varied in a 

numerical study. 

There is a class of undamped flexible satellites for  which pure 

pitching motion is unstable, just a s  in the rigid-body case ,  

even for pitch amplitudes of only one degree. 

The introduction of damping into a flexible satellite for which 

pure pitch i s  unstable wil l  remove the instability only if the 

satellite i s  very flexible. If the satellite's lowest elastic 
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natural frequency is even as high a s  the orbit  frequency, some 

inertia configurations a r e  still unstable in pitch. Thus, the 

phenomenon found by Kane i s  not automatically removed by 

introducing flexibility, but must  be deliberately taken into 

account in design. 

2 .2  Static Behavior of Long Wires and Rods Attached to 
Verticallv Stabilized Satellites (Chapter 4) 

2. 2 .  1 Problem Description 

Current gravity-gradient satellites have large dimensions because 

the gravity-gradient moment depends on the moments of inertia of the 

body. There a r e  other reasons fo r  large satellite dimensions. The 

gravity- stabilized Radio Astronomy Explorer (Reference 4. 3 ) ,  sched- 

uled for  launch in 1967, is a giant antenna 1500 feet long (Figure 2. 1). 

Very large satellites need not be very strong structurally. The 

required strength of the structural members  i s  determined by the 

technique used to deploy them from a folded position in the booster. 

Considering the booms of the Radio Astronomy Explorer to be canti- 

lever beams, the static deflection under a 0.01 ounce load i s  several  

hundred feet. 

The impending existence of very large,  flexible satellites prompts 

the question: What a r e  the in-orbit loads on the structural  members  of 

such a satellite, and what a r e  the resulting deflections ? 

The problem is  considered in this dissertation by examining the 

static behavior of a cantilever beam with tip mass ,  such a s  an inertia 

boom or  antenna, which is extended from a rigid satellite in a circular 

orbit. The significant loads are  produced by the orbital dynamics and 
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Figure 2 .  1. NASA Radio Astronomy Satellite Configuration 
(from Reference 4. 3) 
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the gravitational gradient. 

case where the beam mass  is  negligible in relation to the tip mass ,  

and some conclusions a r e  given about the case of distributed mass.  

Results a r e  obtained for the important 

2 . 2 .  2 Conclusions 

Under certain conditions, the behavior of the satellite appendages 

under the effect of gravitational and orbital centrifugal forces is  

analogous to the problem of Figure 2 . 2 ,  in which the spring constant k 

i s  a negative number. The result is  that, for given tip mass  and beam 

stiffness, the equilibrium deflection i s  zero for beam lengths less  than 

a given critical length. 

flects drastically. The shape cannot be predicted from small-deflection 

beam theory; the exact equations of an elastica must be employed. 

As a practical example, a beam of the type used on the Radio 

For  lengths above the cri t ical ,  the beam de- 

Astronomy Explorer, with a 5 pound tip weight, has a cri t ical  length 

of about 360 feet. 

An analogy i s  found to exist between the problem of static deflec- 

tion of a cantilever beam attached to a vertical satellite, having dis- 

tributed mass ,  and the forced vibration of such a beam. The static 

deflection problem may be solved using the known solution for  the 

vibrating beam. 

2.  3 Pitch Libration of a Rod Satellite (Chapter 5) 

2 .  3 .  1 Problem Statement 

Most work on the dynamics of flexible gravity- gradient satellites 

has dealt with satellites having, a t  most,  two elastic degrees of free- 

dom. The present problem treats a very special r a se  of the motion of 
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1 1  

a continuously flexible satellite having an infinite number of degrees of 

freedom. 

a s  a rod o r  beam o r  wire ,  and only planar pitch motion is considered. 

Results have potential application to the so- called "long-wire 

satellite" (Reference 5. l ) ,  a proposed configuration for a passive 

communications reflector. 

The problem is  restrictive in that the satellite is idealized 

2 . 3 . 2  Conclusions 

To a linear approximation, the long-wire satellite has uncoupled 

rigid and elastic motion. That i s ,  pure pitch motion with the wire re -  

maining in a straight line and oscillating about the vertical i s  possible, 

a s  is pure elastic motion with an equilibrium configuration along the 

vertical. 

For finite amplitude pitch motion, elastic motion i s  excited para- 

metrically. 

mode reduce approximately to  the Mathieu equation. 

The equations for small  elastic motion for each elastic 

For  a steel wire of 0.002 inch diameter,  about 120 feet long, pitch 

motion will cause elastic motion to build up, transferring energy into 

the elastic mode. 

in orbit ,  it might be capable of reducing i ts  pitch amplitude to a very 

small  value by t ransfer  of energy into the elastic mode and subsequent 

structural  damping. 

It is  theorized that, if such a wire could be deployed 



Chapter 3. Infinitesimal and Noninfinitesimal Amplitude 
Stability of a Class of Flexible Satellites 

This section approaches the study of flexible satell i te behavior by 

beginning with the behavior of a rigid gravity-gradient satellite and 

then examining the ways flexible satellite behavior differs f rom rigid- 

body behavior. 

motion which hold for  a rigid body a r e  shown to be false for a c lass  of 

flexible bodies and others a r e  shown to hold also for the flexible body. 

The particular class of flexible bodies examined is chosen to permit  

ready comparison of rigid-body and flexible-body behavior. 

Certain conclusions on stability and instability of 

3. 1 Stabilitv Behavior of a Rigid Satellite in Circular Orbit 

3. 1. 1 Coordinate System and Small-Anele Equations 

Consider a rigid satellite moving in circular orbit  about the ear th  

(Figure 3.1). The coordinate system is that of Reference 3.1. 

The principal axes Bi of the rigid body a r e  nominally aligned with 

O1 is tangent to the a rotating, earth-pointing coordinate f rame,  0.. 

orbi t ,  0 normal to the orbit  and 0 points toward the earth.  

1 

2 3 

The orientations of B. differ from 0. by angles 8 Rotations a r e  

then e2, than e l .  
1 1 i' 

taken in the sequence shown in Figure 3.2; f i r s t  8 

€I3, e2 and e l  will be called yaw, pitch and roll,  respectively. 

3' 

The derivation of the equations of motion takes into account the 

rigid-body dynamics of the satellite, the moment of the gravitational 

field on the satellite, and the effects of the rotating coordinate system. 

The derivation is  given in Appendix By based on the gravity torque 

expressions of Appendix A. The resul ts ,  to first order  in smal l  8. a r e  
1 

12 
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Figure 3 .  1. Orbit Reference Coordinate System 



F i g u r e  3.  2 .  Rotat ions Defining Body Coordina tes  
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dL8 L de 3 
t (I2 - I 3 0 1  )o t Oo(I2 - Il  - 13) dt = L1 8 

I 1 7  

d2eZ 

I 2 2  = L2 

(3.1-1) de 1 
t ( I ~  - Illw:e3 - o o ( ~ 2  - I~ - ~ ~ ) r  = L~ 

where 

I. = Principal moments of inertia 
1 

o = Orbital angular velocity 
0 

The gravity moments L. a re  given by 
1 

(3.1-2) 

where 

R = Orbit radius 

K = Earth's gravitational constant 

We note that, for a circular orbit ,  

2 K  
0 -  

0 -2  

and introduce the dimensionless parameters 

- I2 - I3 

I1 K2 - 

(3.1-3) 
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So Equations (3.1-1) become 

2 e .  

e 2 t w  e = o  
P 2  

.. 
e 3 +  (K1 t l ) b l  - K1e3 = 0 (3.1-4) 

with 

w =  
P + K l K 2  

(3.1-5) 

where dots denote derivatives with respect to T .  

The uncoupled O 2  equation will be referred to as the "pitch" equa- 

tion and the coupled equations for  8 

equations. 

and O 3  a r e  called the roll-yaw 1 

3. 1. 2 Stability of Infinitesimal Motion 

W e  first summarize the attitude stability of the rigid satellite as 

predicted by the linearized equations of infinitesimal motion, Equa- 

tion (3.  l - 4 ) ,  recognizing the danger of assuming that the actual sys- 

tem behavior can be predicted from the linearized equations. 

The analysis of Equations (3.  1-4) is due to Debra and Delp 

(Reference 3.2) ,  and may be summarized as follows. 

The characterist ic equation is 

The equation can be factored into a l inear equation and a quadratic in 

2 s . 
quire that the three values of s2 be negative. 

To avoid a divergent solution and achieve neutral  stability we r e -  

This implies: 
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For  the linear equation 

w 3 0 (K1 t K2 =. 0) 
P 

(3.1-7a) 

For  the quadratic, from Descartes' rule of signs 

1 t 3K2 - KlK2 (3. 1-7b) 

KlK2C 0 (3. 1 - 7 ~ )  

and, to assure  the existence of rea l  roots, the quadratic must have a 

positive di s c r iminant: 

In addition, there is a physical limitation on the absolute value of K1 

and K2. For  three principal moments of inertia I Ij, Ik, w e  have i' 

I i t I Z I k  , i # j # k  
j 

which implies 

lK i l  Z 1 

-K2 The stability conditions can be displayed graphically in  the K1 

plane (Figure 3.3). There a r e  two stable regions, a main region for 

which K2 = -K1, (I2=- I1 * 13) (the I'long" axis of the body i s  nominally 

vertical)  and a smaller one, sometimes called the Delp region, in 

which I1 = I3 *I2,  so that the 'llong" axis is normal to the orbit  

plane. 

The physical characterist ics of the bodies in various portions of 

the K1-K2 plane a r e  indicated in Figure 3.4,  adapted from 

Reference 3.3. 
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Figure 3. 3 gives a complete picture of rigid-body stability within 

the framework of the linearized equations. 

3. 1. 3 Effect of Noninfinitesimal Amplitude Pitching Motion 

The picture of rigid-body stability given previously can be modi- 

fied considerably by the effects of nonlinear te rms .  A significant 

contribution was made recently by Kane (Reference 3.4) who con- 

sidered the effect of noninfinitesimal amplitude of the pitch angle 8 2 '  

as small  angles, but Kane's technique was to consider e l  and 8 3 

to retain O 2  a s  an arbi t rary angle in the equations of motion. The pitch 

equation remains uncoupled from roll and yaw, but now takes the form 

[Appendix B, Equation (B- 12b) of the pendulum equation 

2 

1 
.. 
02 + 

- 
w 

P 
2 
- sin 202 (3. 1-8) 

The coefficients of the roll-yaw equations a r e  also modified when 

8 is retained as a large angle. 

be written in the symbolic form 

The revised roll-yaw equations may 2 

(3.1-9) 

Here f(8,, 6 ) denotes various functions of 8 which have the limits 

required by Equation (3.1-4) as O 2  and 6 
f a r e  all periodic because the solutions of Equation (3.1-8) a r e  all 

2 2 

tend to zero.  The functions 2 

periodic. The linearized, constant-coefficient roll-yaw system of 

Equation ( 3 .  1-4) i s  thus replaced by a system with periodic coefficients, 



21 

If any of the solutions of Equation (3.1-9) grow with t ime it means 

that uncoupled pitch motion with 8 €I3 = 0 is unstable. 

Kane used Floquet theory to evaluate the stability of the e l ,  g 3  

system. The technique is described in detail in Appendix C because 

it is used la ter  in Chapter 3 to study certain flexible-body problems. 

Basically, it  takes advantage of the fact that the solution of a system 

of l inear ,  homogeneous, periodic coefficient equations can ordinarily 

be written a s  the sum of linearly independent normal solutions, ni(t). 

The normal solutions have the property for all t ime t that 

ni(t t T )  = Xini(t) 

where T is  the period of the parametr ic  excitation and A .  is a complex 

number called the characterist ic multiplier of the solution. If I A .  I 2 1 

the solution grows indefinitely with t ime and is therefore unstable. 

1 

1 

The characterist ic multipliers must ordinarily be determined by 

numerically integrating the differential equations over one cycle. Any 

convenient complete set  of solutions may be used. 

Kane's application of Floquet theory to the rigid-body gravity- 

gradient problem produced the surprising resul t  that planar pitching 

motion with small  e l ,  8 within 

the stable regions of Figure 3 . 3 ,  fo r  amplitudes of 8 as low as one 

degree.  

is unstable fo r  certain values of K 3 i' 

2 

That is ,  the characterist ic multipliers of the periodic coeffi- 

cient roll-yaw system a r e  greater than one in 

an  initial pitch motion would cause roll-yaw to 

smal l  but nonzero initial values of 9 and 03. 1 

magnitude showing that 

build up f r o m  arb i t ra r i ly  
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The unstable inertia configurations found by Kane within the region 

of infinitesimal stability a r e  shown in Figure 3.5, for a pitch ampli- 

tude of one degree. The immediate neighborhood of each c ross  con- 

tains a region of unstable points. The points shown were found 

by systematically examining a uniform grid of points in the K 

plane, but i t  will be shown in the next section that regions of potential 

instability can be located a priori. 

1 -K2 

Kane's results,  which applying only to an idealized rigid body, a r e  

very important because of the implication that linearized roll-yaw 

equations cannot be used for  design purposes. Actual gravity gradient 

satellites (Reference 1 . 2 ,  for example) invariably execute steady- state 

pitch oscillations of one degree o r  more  because of magnetic distur- 

bance torques, orbit  eccentricity, and so forth. The presence of 

appreciable pitch oscillation might invalidate a design based on 

linearized equations similar to Equation ( 3 .  1-4). 

3. 1.4 Interpretation of Roll-Yaw Instability 
in Terms of Perturbation Solution 

The Floquet theory technique i s  rigorous and accurate 

easily yield information about the locations of unstable reg 

but does not 

ons. A 

systematic search of the parameter space of interest  is  practical when 

only the inertia parameters  KI and K a r e  involved, but is  much more  

difficult when other parameters,  such as those characterizing the body 

flexibility, must also be varied. 

2 

J. V. Breakwell (private comm.xinication) and the present author 

have independently pointed out that a perturbation solution can be used 

to locate the general regions of unstable roll-yaw motion. The general 
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technique is outlined in References 3.5 and 3 . 6 ,  among other sources .  

Given a general system of second-order l inear equations with periodic 

(3.1-10) 

where ( 5 )  is the solution vector, [M], [C] and [K] a r e  constant ma- 

t r ices  and [M1], [C l] and [K1] a r e  periodic with zero  mean and f r e -  

quency o E is proportional to the amplitude of periodic excitation. 
P' 

Fo r  small  E we may seek a solution in the fo rm 

where (x ) is the solution for E = 0. x ) will have the fo rm 
-0 (- 0 

(3.1- 11) 

where the s. a r e  the roots of the characterist ic equation 
1 

A(s) = l[M]sz t [CIS t [K] = 0 I 
and the (C). a r e  vector constants. Each element of the coefficient 

mat r ices  [ M ~ J ,  [C 1] and [Kl] can be expanded in Fourier  s e r i e s  

- 1  

exp (inw t) t E exp ( - i u  t)  (3.1-12) 
P n P I 

fo r  appropriate constants Dn, En. After substituting Equations (3.1- 11) 

and (3.1-12)into(3.1-10) and retaining only f i r s t -order  terms in E ,  the 

resulting equation has the form 

(3.  1-13) 



where f ( t )  is  the sum of terms of form 

(s*m i)t  
P C e  

The solution of Equation (3.1 - 13) will contain te rms  having de- 

nominators A(s. *nu i). The perturbation solution wil l  then be invalid 

near frequencies w given by s = s .  i n o  i for all  i ,  j ,  n ,  because A 
i J  P 

vanishes at those frequencies. 

guarantee instability, but does invalidate the perturbation solution and 

indicates a possible instability. 

‘ P  

Such frequency coincidence does not 

The heuristic argument above can be extended (Reference 3.6) to 

give a method for predicting a range of frequencies near 

( S i  - s.)  
iw = f 

P n (3. 1-14) 

for which unstable parametric excitation occurs. 

Applying Equation (3. 1 - 14) to the present problem, we put s = iw 

in the quartic par t  of Equation (3.  1-6) and solve for the two frequen- 

cies w 1’ 02’ w 2  =-a1 of roll-yaw motion. 

resonance will  occur for n = 1 in Equation (3. 1- 14), so the possibilities 

The fundamental parametric 

a r e  

w = w1 t u 2 ,  w 2  - w l ,  202, 2 W l  (3. 1-15) 
P 

- w1 and w = 2w1 are physically possible. The 
p = w2 P 

Of these,  only w 

other kinds of frequency coincidence cannot occur for  real ,  physical 

rigid bodies. 

The curves in the K -K plane can conveniently be cross-plotted 1 2  

A more f r o m  the curves of constant wl, o2 and w 

accurate technique is to choose a value of s = i w l  and then solve 

of Reference 3.2. 
P 
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Equations (3.1-6) and (3.1-15) for  K1 and K2. 

for  w 

The resulting curves 

2' = 2 w l  emerge as  the two roots of a quadratic in K 
P 
The two parametr ic  resonance curves a r e  given in Figure 3.6. 

The unstable points found by Kane (denoted by crosses)  a r e  seen 

to coincide well with the curve w 

No unstable points corresponding to w = w 

(private communication) has apparently discovered the analytic reason 

= 201 particularly in the main region. 

Breakwell 
P 

- w1 were found. 2 

why they do not occur. 

Using Kane's Floquet theory technique a t  points on the paramet r ic  

resonance line of Figure 3 . 6 ,  the author has reproduced Kane's points 

and has also found other unstable points (indicated by circles) .  

stable points have been found on the line and it seems certain that it 

represents the center of a continuous narrow s t r ip  of unstable points. 

No 

3 .  2 Infinitesimal Amplitude Stability Behavior of a Class 
of Flexible Satellites in Circular Orbit 

With the rigid-body results as background, the central  problems 

of Chapter 3 can be stated: 

a )  How does the infinitesimal amplitude stability behavior 

described by Debra and Delp (Section 3.1.2) change when 

the satellite becomes flexible ? 

Does the instability of noninfinitesimal pitching motion, 

found by Kane for a rigid body (Section 3. 1. 3), have a 

significance for a body with realist ic flexibility and 

damping ? 

in this section and the second in Section 3. 3. 

b) 

The f i r s t  of these questions will be treated 
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The problems posed a r e  meaningful because current and proposed 

gravity- gradient satellites have significant flexibility and damping. 

There a r e  three main types: 

A. Extremely flexible satellites consisting of two o r  more  

rigid bodies connected by very weak spring hinges 

(Reference 3 . 7 ,  for  example). 

Continuously flexible satellites with distributed stiffness 

and damping. 

5.4) but not yet flight tested. 

Magnetically anchored satellites (Reference 1.3) which 

a r e  rigid and obtain damping through use of the ear th 's  

magnetic field. 

B. 

This type has been proposed (Reference 

C. 

The present problems concern satellites of types A and B,  type C 

satellites being excluded because they have a non-zero magnetic torque 

acting on the satellite a s  well as  a gravitational torque. 

The approach will be to select a class of satellites which can be 

readily compared with the class of rigid satellites, and to examine the 

differences in behavior. 

somewhat resemble actual satellites, but simplifications will be made 

The selected satellite configurations wil l  

to make the analysis more tractable. 

3 .  2.  1 Selection of Flexible Bodv Configuration 

3 .  2. 1. 1 Inertial Configuration 

The inertia parameters K1 and K completely determine the con- 2 

figuration of a rigid satellite. For any rigid satellite, there a r e  an 
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infinite number of flexible bodies which have the same inertia dis t r i -  

bution. 

must be accomplished by carefully examining the problem for solution: 

to determine how the behavior of a flexible body differs f rom that of a 

Selection of a particular flexible body configuration f o r  study 

corresponding rigid body. 

One necessary condition is clearly that the inertia properties of 

the body chosen should be the same a s  for the corresponding rigid body 

when the elastic deformation is zero.  Hence, we can use the same 

quantities K and K to describe the behavior. 1 2 

Real flexible bodies have an infinite number of flexible degrees 

of freedom. The general equations for such a body a r e  complicated. 

For  clarity, we select a body which has only one flexible degree of 

freedom. 

by only two parameters.  

stiffness is  the natural frequency of the elastic mode. 

of a nonuniform gravitational field a l ters  the effective natural f re -  

quency of a flexible body because elastic deformation changes the 

gravitational potential energy. To specify the stiffness unambiguously, 

we use the natural frequency of the body when it i s  a t  r e s t  in a uniform 

gravitational field. 

The stiffness and damping can therefore be characterized 

A suitable parameter for describing the 

The presence 

As a physically intuitive measure of the damping, we use the frac-  

tion of critical damping of the elastic system in a uniformgravitational 

field. 

Another constraint on the selection of a configuration for study is 

posed by the necessity of studying the system behavior for values of 

the inertia parameters KI  and K which cover the entire physically 2 
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realizable region. The flexible body selected for study must  be 

flexible over the entire range of inertia parameters .  This require- 

ment places severe restrictions on the body to be considered. Fo r  

example, consider the body of Figure 3 .7 ,  which is made up of two 

rigid bodies, B and Bq’, connected by a flexible joint parallel  to axis 

B 1. 

cannot be compared meaningfully to an equivalent rigid body when the 

.I. 

.I. 

Body B-’ extends out along the axis B The body il lustrated 2‘  

inertias a r e  such that the parametric point K 

near  the line A1 -A2 of Figure 3 .4 ,  because on that line the body con- 
* 

sidered must have zero  dimension along axis B Therefore Body B 

will have zero length and therefore zero  m a s s  and the composite body 

will behave exactly the same a s  the corresponding rigid body. 

s imilar  situation exists near points A 

along axis B 

K2 for the body l ies  1’ 

2’  

A 

and A4, where the dimension 3 

must  shrink to  zero.  1 

Examination of Figure 3 . 4  shows that the only body dimension 

which is not zero somewhere in that region of the K -K  plane which 1 2  

is stable for a rigid body is the dimension along axis B Thus, a 3’  

3 main body having a subsidiary body aligned nominally along axis B 

could retain its flexible nature over the ent i re  rigid-body region. The 

shape in the limiting regions A l-A2, A3-A4 is that of two paral le l  

plates,  one inside the other ,  hinged along a principal axis of each. 

In the above discussion, it has been tacitly assumed that the two 

rigid bodies forming the composite body a r e  joined at their  centers  of 

gravity. The purpose of this restriction is only to reduce the number 

of quantities to be varied in a paramet r ic  analysis. 

of gravity offset should form a separate  study. 

Effect of center 
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MAIN BODY B I 

/- . / I 

I SU BSI DI ARY BODY B* 

F i g u r e  3 . 7 .  Two Rigid Bodies  Connected W i t h  a 
Hinge Along Axis B1 
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It is  not necessary that the subsidiary body be the same shape 

over the entire stable region. 

body and the subsidiary body inertially similar;  i. e., to choose their 

inertias in constant ratios. 

ing effects of damping, because such a composite body has a mode of 

oscillation which is identical to that of an equivalent rigid body and is 

not damped, even though the joint between bodies i s  dissipative. 

is, a composite body, made up of two inertially similar components 

has undamped modes of motion. 

The obvious choice i s  to have the main 

This alternative i s  impractical for  study- 

That 

Since i t  is  not practical to give the same inertia properties to the 

two bodies, the most physically meaningful choice i s  to have the second 

(subsidiary) body in the shape of an ideal rod with no moment of inertia 

about the B 3  axis. 

variable moments of inertia,  in order  to cover the entire stable 

The principal body must then have three distinct 

region. 

3 . 2 .  1 . 2  Hinge Axis Direction 

There remains the selection of the direction of the axis of the 

hinge between the two composite bodies. 

a hinge axis along axis B 2 ,  nominally perpendicular to the orbit plane. 

Then, for small amplitudes, there wil l  be two modes of purely planar 

motion in the pitch plane, each corresponding to a natural frequency. 

Fo r  high stiffness, one mode is nearly the same a s  the planar pitch 

libration of a rigid body, while the other is close to the elastic mode 

of the satellite in a uniform gravitational field. 

stability of planar motion is then complicated by the fact that 

F i r s t ,  suppose that there i s  

The problem of the 
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parametr ic  excitation of roll-yaw motion occurs a t  two frequencies,  

with unusual behavior possible when the two frequencies a r e  harmoni- 

cally related. Also, incorporation of damping in the hinge along axis B 

would guarantee ultimate stability of pitch motion for any initial pitch 

amplitude, because the parametric excitation of roll-yaw by pitch will 

gradually diminish to zero.  

2 

If the hinge along the B2 axis is the only hinge, there  is a further 

complication. In this case ,  it is clear  physically, and can be con- 

f i rmed analytically, that linearized roll-yaw equations a r e  not coupled 

to the elastic motion. 

a r e  the same for  the flexible body a s  for  the equivalent rigid body and 

That is ,  the roll-yaw frequencies and modes 

no damping exists.  

For  a simplified, realistic problem, a hinge must  be oriented along 

3 the roll (B1) axis o r  along the yaw ( B  ) axis.  A hinge along the B 3  

axis ,  however, has no meaning if  the subsidiary body is a rod aligned 

with the B3 axis, as discussedabove. The rod has no moment of inertia 

about axis B3, and therefore the presence of a hinge is immaterial .  

3 . 2 .  1.3  Summary of Configuration to be Studied 

The considerations above indicate that the appropriate geometry for 

the present study is a main rigid body having distinct moments of inertia 

11, 12, I3 and coupled to a body which is a rod aligned nominally along axis 

B3 and hinged along B1. Such a configuration can be characterized by 

the dimensionless ratios K and K andone additional parameter  speci- 

fying the relationship between the rod inertia and one of the main body 

inertias.  (While there a r e  four independent inertia pa rame te r s ,  three 

fo r  the main body and one for the rod, the equations can be reduced to 

1 2 
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non-dimensional form by dividing through by any one of the parameters .  ) 

There remains only the selection of the ratio between the rod inertia 

and the main body inertias. 

been established somewhat arbitrari ly by selecting the moments of 

inertia of the two bodies about axis 1 to be identical, so that the prin- 

cipal moments of inertia a r e  I 

For reasons of simplicity, this ratio has 

, I3 and 11, 11, 0 ,  respectively. 

The final configuration, then, i s  a c lass  of gravity-gradient satel- 

lites having a single elastic degree of freedom (rotation about the hinge 

axis) and three rigid-body degrees of freedom. A member of the class  

is  determined completely by specifying: 

1 

1’ I2 

a)  The inertia parameters K and K2 ,  measured with 

zero elastic deflection 

b)  The elastic stiffness 

c)  The hinge damping. 

The configuration selected i s  not realist ic because it has no pitch 

Incorporation of a second damped hinge along axis B damping. 

greatly complicate the physical picture. 

considered as an approach to the more  realist ic problem. 

would 2 

The present study should be 

As the elastic stiffness of the satellite decreases ,  i t  will behave 

less  and less  like a flexible body and more  like two coupled rigid 

bodies. Comparison between its  behavior and that of a rigid satellite 

will become less  and less  meaningful. Attention will be concentrated 

mainly on flexible satellites having elastic natural frequencies some- 

what higher than the rigid-body libration frequencies. 



3 . 2 . 2  Equations of Motion for Flexible Body 

The equations of motion are  derived from the angular momentum 

principle in Appendix B, using the coordinate system of Figure 3 . 8 .  

I relative The orientation of the main body B, having inertias I 

to a local-vertical coordinate system, i s  described by the same se t  of 

angles 8 

sidiary rod body B 

through an angle a about axis B1. 

linear torsional spring and damper, having constants k and c. 

1’ I29 3 

€I2, 8 used for the rigid body (Section 3 .  1. 1). The sub- 1’ 3 * 
with inertias 11, 11, 0 is rotated relative to B 

Relative rotation is resisted by a 

The derivation of Appendix B retains 8 a s  a large angle for use 2 

in the noninfinitesimal-amplitude stability studies described in Sec- 

tions 3 . 2 .  5 and 3 . 2 . 6 .  

(dots indicate derivatives with respect to dimensionless t ime, T = oot) 

The linearized version of the equations is:  

.. 

.. 

.. 
a 

0 

0 

t 

4(2K2 - 1) 

0 

-8(K2 - 1) 

0 

-2(K2 - 1) 

0 

-K1 

and 

2 .. 
e 2 t o  e = o  

P 

- 50, 

0 

0 

0 2 t 4  n 

e 3  

a 

. -  

e l  

e 3  

a 
. -  

( 3 . 2 -  1 )  

( 3 . 2 - 2 )  
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Figure 3 . 8 .  Configuration for  Study: An Arbitrary Rigid Body B 
Coupled to a Rod B* by a Hinge Along Axis B1 
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Here 

K1 = I1 - I2 

I3 

I1 t I2 - I3 

211 
K =  2 (3.2-3) 

a r e  the inertia parameters.  They a r e  analogous to the parameters  

K1 and K of Equation (3. 1-3), used for  a rigid body, but include the 2 * 
inertias of both bodies B and B . Throughout Section 3. 2 ,  the defini- 

tion of Equation (3.2-3) w i l l  be used. 

In addition, referring to Equation (3.2-  1) 

the dimensionless natural frequency 
of the body at  r e s t  in uniform gravity n o  

0 

C 
& = -  the fraction of cri t ical  damping under 

11% the same circumstances 

the frequency of pitch oscillation. 
P 

3.2. 3 Stability of Infinitesimal Motion Without Damping 

The stability of the linearized system, Equations (3. 2-1), is de- 

termined by the roots of the characteristic equation. For  s = 0 (no 

damping) the roll-yaw characteristic equation, obtained by taking the 

Laplace transform of Equation (3.2- 1) and evaluating the determinant, 

i s  



S' + 6K2 t 2 t K1 - 2K1K2 t w:)s4 ( 
t on (3K2 - KlK2 t 1 )  t 8(K1 t 3K2 - 1 - 2K1K2)]s2 I '  
t 16Kl ( l  - 2K2) - 4KlK2a:] = 0 [ ( 3 . 2 - 4 )  

2 
n For  w + 00 we recover 

agreeing with the rigid-body equation. 

The pitch characteristic equation remains,  as in the rigid case,  

s 2 t o  2 = o  ( 3 . 2 - 5 )  
P 

we now proceed to interpret the requirement that Equations ( 3 . 2 - 4 )  and 

( 3 . 2 - 5 )  have no roots with positive real  par t s ,  in t e rms  of require- 

ments on K 1 ,  K and an. 2 

Fi r s t ,  from Equation ( 3 . 2 - 6 )  a s  in the rigid case 

K2 -Kl  ( 3 . 2 - 7 )  

Equation ( 3 . 2 - 4 )  i s  a cubic in 

Def s2 
P -  

We write i t  in the form 

3 2 
F(p) = p t Ap t Bp + C = 0 (3.2-8) 



0 

D e s c a r t e s '  ru l e  of s igns  gives as n e c e s s a r y  conditions 

A(K1, K2) a 0 

B(Kl ,  K2) > 0 

C(K1, K2) - 0 (3 .2 -9 )  

Substituting f r o m  Equation (3 .2 -4 ) ,  we  find that Equations (3 .2-9)  

r e q u i r e ,  respec t ive ly  

-(a n t 2 t K1) 

K2 - 2K1 

2 8 - w n - 8K1 

K 2 r  3(wnz t 8) - Klk: t 16) 

(3 .2 -  loa) 

( 3 . 2 -  lob) 

(3.2-10c)  

2 
n For the cases of interest, w 

ments 3.2-7 and 3.2-  1Oc are s t ronges t  f o r  all va lues  of K 1,  K2. Equa-  

tion (3 .2 -  1Oc) r equ i r e s :  

2 1 ,  and ,  phys ica l ly ,  I Ki I 5 1. Requ i re -  

4 

w t 8  K2 - 2 If K1 0: 

n 

If K1 * 0: 4 

w t 8  K 2 C  z 
n 

(3 .2-  11) 

Requ i remen t s  3 .2-7  and 3. 2-1Oc lead to the stability d i a g r a m  of 

F i g u r e  3 . 9 ,  with the location of the dotted boundaries still uncer ta in .  
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The principal change from the rigid-body case (Figure 3.3) is an in- 

crease in size of the Delp region and a shrinking of the main region. 

We now determine the remaining boundaries. 

The requirements of Equations (3.2-9) limit the cubic, Equation 

(3.2-8) to one of the three forms shown in Figure 3. 10. 

only curve I1 yields three negative rea l  roots,  corresponding to 

s = &a. 

occurs when the cubic has a double root. 

finding the condition. 

is  to write Equation (3.2-8)  in the factored form 

Of these, 

The transition from neutrally stable to unstable behavior 

There a r e  several  ways of 

A convenient method, leading to hand solution, 

with - r  the location of the double root, and - r3  the third root. 

Comparison of Equations (3.2- 12) and (3.2-8) leads to the condi- 

tions 

2 r  t r3 = A(K19 K2) 

2 r t 2rr3 = B(K1, K2) 

(3.2-13) 2 
r r3 = C(K1, K2) 

For a hand solution we choose r a s  a parameter.  

expressions for A, B and C from Equation (3.2-4) and into Equation 

(3.2- 13) and eliminating K I ,  we find 

Substituting the 

(3.2- 14) 
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P 

Figure 3.10. Possible Shapes for the Cubic of Equation (3.2-8) 



with 

2 p,  = 4 r  t 2ru: - 3r  - 0 n i- 8 

a2 = 2(-&,’ - 16 t r2) 

2 p2 = 16 - r 

2 a3 = 6 r  

p3 = r2(2 tu,” - 2r) 

= 4 r  - wf - 16 a4 

p4 = - 2r 

and 

r2(6K2 t 2 t w,“ - 2 r )  
K. = 3 ( 3 . 2 -  1 5) 

1 -4K20n‘ t (16 - rL)(l  - 2K2) 

For  given r and o the quadratic Equation ( 3 . 2 -  14) yields two n 

values of K for which double roots exist. 

of K1 a r e  found f rom Equation (3.2-15). 

parametr ic  equations of the stability boundary curve. 

The corresponding values 

K l ( r )  and K2(r )  are then the 

The stable and 

2 

unstable sides of the curve a r e  found by varying K1 o r  K2 slightly and 

observing the sign of the cubic, Equation ( 3 . 2 - 8 ) .  The physically 

realizable portion of the stability boundary is  a curve in the lower 

right quadrant, which, for a,” -300, approaches the curved rigid- 

body stability boundary of Equation (3.1-7d). 
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The entire infinitesimal- amplitude stability picture i s  presented 

2 in Figures 3. 11 to 3. 13 for  several values of wn . 
double-root condition i s  to decrease the size of the Delp region. 

The effect of the 

The rather complex behavior in the region K1 - 0 has been 

checked numerically by the Floquet procedure of Appendix C. 

points a r e  shown a s  circles and unstable points a s  X I S .  

Stable 

3.2.4 Infinitesimal- Amplitude Stability Boundaries With Damping 

The discussion of stability in the previous section referred to 

stability in the sense of boundedness, with roots on the imaginary 

axis. 

tem,  Equations (3.2-1), for 5 f 0. 

We now investigate the asymptotic stability of the roll-yaw sys- 

We f i r s t  note that the pitch equation i s  unchanged by the introduc- 

tion of damping, so that K1 t K2 - 0 is still the condition for pitch 

stability. 

damping i s  facilitated by application of Zajac's recent extension of the 

Kelvin- Tait-Chetaev theorem (Reference 3. 8).  

The examination of roll-yaw stability in the presence of 

The equations for a large class  of satellite attitude problems can 

be cast  in the form 

[AI(:) + [GI(&)  + [cI(-) + [ K I ( ~ )  = 0 ( 3 . 2 -  16) 
where 

[A] is a positive-definite inertia matrix 

(2) is  the coordinate vector 

[C] 

[G] 

is a symmetric damping matrix which is either 
positive definite o r  positive semidefinite 

is a skew-symmetric matrix resulting from gyro- 
scopic te rms  in the equations of motion 

is a symmetric stiffness matrix. [K] 
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I n  the conventional passive linear systems encountered in s t ruc-  

t u r a l  dynamics, the coefficients of the coordinate velocities form a 

symmetric,  positive-definite damping matrix. For  systems such as 

the one considered here ,  the velocity matrix may have a skew- 

symmetric component, a s  seen in Equations ( 3 . 1 - 4 ) .  Thomson, in 

Reference 3. 9 ,  showed that it i s  possible to achieve neutral stability 

with such a system, even though the system would be unstable without 

the matrix of velocity coefficients. 

Loosely, the Kelvin- Tait-Chetaev theorem states that such gyro- 

scopic stabilization of an unstable system is not usually feasible when 

damping is introduced. 

In the present situation the damping matrix will be shown to be 

positive semidefinite rather than positive definite. Zajac has extended 

the Kelvin-Tait-Chetaev theorem to cover this case.  His result  is  

(Reference 3 .  8)  the following: 

In the equation 

[ I J ( X )  + [ c ] ( & ) +  [ G I ( & )  + [ K ] ( z )  ( 3 .  2- 17)  

let 

11.1 be the unit matrix 

[C 

[GI 

1KJ be a diagonal matrix 

be a symmetric,  positive semidefinite matrix 

be a skew- symmetric matrix 

Then the system described by Equation ( 3 . 2 -  17) i s  stable i f  the diag- 

onal elements of [K] a r e  all  positive and unstable if they a r e  all 

negative. For the proof, we refer to Reference 3 .  8. 

- 
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3. 2 . 4 .  1 Application of Kelvin-Tait-Chetaev Theorem 

W e  rewrite the linearized equations of the present problem, 

Equations ( 3 . 2 - 1 ) ,  in the m o r e  symmetr ic  form described in 

Appendix B ,  Section B. 8. 

1 
t 

t 

t 

0 0 

0 I3  

O I1  
.. s ::I P 

0 

- I - I1)w 3 0 

0 

C 

0 

- c  

. c  -1 j [;; 
0 

2 
( I2  - U0 

0 

( 3 . 2 - 1 8 )  

( 3 . 2 -  19) 
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Here 

p = e l t a  

c is the dashpot constant 

k i s  the spring constant 

The positive definiteness of [C 1] is  determined by its eigenvalues, 

which a r e  0 ,  0 ,  2c, so that [C1] is  positive semidefinite. 

Equations ( 3 . 2 -  18) a r e  not in the form needed for application of 

They can be reduced to that form by premultiplying by the theorem. 

[A]- and making the transformation 

where [M] i s  the modal matrix of the eigenvalue problem 

The norms of the modal columns can be adjusted so that the new 

matrices of velocity coefficients 

[GI] = [MI -' [A] -' rG1] [MJ 

a r e  st i l l  skew-symmetric and symmetr ic  positive semidefinite, r e -  

spectively. 

onal matrix 

Then stability i s  determined by the elements of the diag- 

which a r e  the roots X of 

- A I 3 1 1  = 0 ( 3 . 2 - 2 0 )  
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0 

There is no need to car ry  out the transformations explicitly; the 

diagonal elements a r e  simply the eigenvalues A .  defined by Equation 

(3.2-20), and a r e  given by 

1 

with roots 

- I1)'w t k2] 1/2 
2(11 t I2 - 13)w: t k f [4(12 - I3 0 

A 2 , 3  = I1 I1 

o r ,  introducing the K-notation Equations (3.2- 3)], I 

2 w 
A 2 , 3  = 4K2 + - 1) t -q- 2 
w 
0 

For  all the 1 ' s  to be greater  than zero we require 

K1 0 

2 
0 n 

K2 =--7 

a positive discriminant, leading to 

4 w 16(K2 - 1) 2 t 7 n -0 

(3.2-2 l a )  

(3.2-21b) 

( 3 . 2 - 2 1 ~ )  
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which is always satisfied, and two negative roots of the quadratic, 

leading to 

4 
2 n w 

16(K2 - 1) t -q- 

(3.2-21d) 4 

K2 w 2 t 8  n 

Conditions (3.2-21) a r e  sufficient for stability of the damped system. 

Condition (3 .  2-21d) i s  the same a s  for stability of the main region in 

the undamped case,  Equation (3.2-11). Condition (3.2-21a) does not 

hold for  K1 =. 0 ,  so that the stability of the Delp region in the presence 

of damping i s  not guaranteed. 

To prove instability from Zajac's extension to the Kelvin- Tait- 

Chetaev theorem, we require that all of the inequalities, Equations 

(3.2-21) be reversed. Since (3.2.21b) never occurs for  a system 

stable in the absence of damping, the theorem says nothing definite 

about the stability of the modified Delp region. 

3.2.4. 2 Stability of Damped System from Characterist ic Equation 

The characteristic equation for the damped system is  obtained by 

Laplace transforming Equations (3.2- 1) and evaluating the determinant. 

The result  was given in Equation (3.2-4) for  the case 5 = 0. In general 

it has the form 

6 5 4 3 2 
0 

s t A 5 s  t A4s t A 3 s  t A2s t A1s t A 

(3.2-22) 



A and A a r e  given in Equation (3.2-4) for the undamped case A4' 2 0 

and a r e  not changed by the introduction of damping. The other coeffi- 

cients a r e  

A5 = 25wn 

A3 = 25wn(3K2 t 1 - K1K2) 

A necessary condition i s  Ai 2 0. We see immediately that 

A1 - 0  

(3.  2-23) 

3 .2 -2  

requires K l K 2  0 and means that the portion of the Delp region for 

which K2 0 is  unstable. A and A a r e  always positive in the re -  

gions of interest. 

5 3 

3.2.4. 3 Results: Infinitesimal Stability for Damped Case 

Figures 3. 14 and 3. 15 show the stability picture in the case of 

damping for w n 

K1 0 i s  unstable but gives no information about the quadrant 

K1 Z. 0 ,  K2 4 0 ,  which contains a small  triangular portion of the modi- 

fied Delp region. 

of particular interest. 

= 5 and 1. Condition (3.2-24) shows that the quadrant 

0 ,  K2 

Bodies in this region a r e  nearly spherical and not 

Stability could be evaluated through the Routh-Hurwitz cri terion, 

but the f i r s t  three Routh-Hurwitz determinants give no new informa- 

tion and the results may not merit  the algebra required to proceed 

further.  

53  
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Numerical evaluation at  discrete points through the Floquet proce- 

dure has confirmed the results for the case o 

a r e  marked by crosses  in Figure 3 .  14. 

= 5. Unstable points n 

The point taken in the small 

triangular region showed instability. 

3.2.5 A Physical Interpretation 

One resul t  of the investigation of infinitesimal stability has been 

the reduction in s ize  of the main stable region in the K - K  

which would seem to lead to the conclusion that the flexible body con- 

sidered is " less  stable" than a rigid body. 

plane, 1 2  

The actual situation is 

somewhat different: The reduction in the s ize  of the region is a state- 

ment of the unsurprising fact that an unstable main body can be sta- 

bilized by coupling it to a gravitationally stabilized rod (the subsidiary 

body) through a sufficiently strong spring. 

in a r e a  is a consequence of the introduction of the parameters  K 

K2, which a r e  very convenient computationally but not very meaningful 

physically . 

The misleading reduction 

and 1 

To examine the situation, consider the symmetric l inearized 

Equations (3.2-18),  for  the case I 

the composite body), and for no damping. 

t I2 > 211 * I3 (the main region for  

We will determine the conditions for  stability in the absence of the 

velocity-dependent gyroscopic terms. That i s ,  the conditions under 

which a small angular displacement is resis ted by a restoring moment, 

i r respect ive of the angular rate. 

meaning for  the Delp region, K1 * 0 ,  because as Zajac has shown, the 

velocity-dependent gyroscopic terms a r e  necessary to provide 

stability . 

Such a discussion would have no 



In the absence of the coefficients of 6 6 and b ,  the system of 1 '  3 

Equation ( 3 . 2 -  18) can be represented by the l inear mechanical analog 

of Figure 3 . 1 6 ,  which has the same equations of motion. kb and k 

a r e  positive, while k 

venience we take I = m = 1. 

C 

can be either positive o r  negative. For  con- a 

1 1 

The characteristic equation for the system of Figure 3.  16 is 

2 2 2 
[s t k a t  kb)(s t kc t kb)-  kb = 0 

following the procedure of 

for no positive real  root. 

Section 3 . 2 . 4 .  1, we derive the condition 

It is 

kbkc 

kb ' kc 
k > -  a ( 3 . 2 -  26)  

That i s ,  ka need not be positive, i t  only needs to be greater than a 

particular negative number. Then 

Ilk, 2 '4 = ( I 2  - I )w 3 0  

can be negative, corresponding to a main body which is gravitationally 

unstable by itself. 

Converting to the K1-K notation, we have 2 

2 
k =  4(12 - I 3 b O  

4(2K2 - l ) w 0  2 
I1 a 

2 2  
w w  k n o  kb = - I1 =2 

k = 4  
C 
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so the inequality (3.2-26) converts to 

4 

t 8 K2 

which is Condition (3.2- 11) of Section 3.2.3,  showing that the hori- 

zontal stability boundary in the main region of the K -K 

represents a necessary condition for  stabilization of an unstable main 

body by the addition of a (gravitationally stable) subsidiary rod body. 

plane merely 1 2  
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3 .  3 Stability of Planar Pitching Motion for a Flexible Satellite 

The preceding section has established the stability behavior of the 

particular flexible satellite chosen for study, on the basis of linearized 

equations. We now proceed to examine the feasibility of purely planar 

pitching motion a t  noninfinitesimal amplitude, the problem studied by 

Kane fo r  the rigid body. We wish to determine whether purely planar 

motion can exist for noninfinitesimal amplitudes of motion, or  whether 

small  initial deviations in the roll and yaw coordinates will build up 

and cause the motion to become three-dimensional. 

The problem will be studied by Kane's Floquet theory technique 

(Appendix C). 

We f i rs t  derive the equations of motion for the flexible body, re -  

taining the pitch angle 8 a s  a large angle but considering 8 8 and a 2 1' 3 

to be small. The derivation and the final equations [Equations (B-11)] 

a r e  given - in Appendix B. The pitch equation, a s  in the rigid case,  is 

2 
w 

ijz t 2 sin e2  = o 2 

( 3 .  3- 1) 

Where dots denote derivatives with respect to 

T = u  t 
0 

The roll-yaw equations couple with the equation for elastic defor- 

mation to form a sixth-order system whose coefficients a r e  functions 

of 0 2 ,  6 and the parameters K1, K2, 5 ,  on. The coefficients a r e  

periodic functions of time because 82 i s  periodic. 

2 
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As shown in Appendix C ,  the stability of the sixth-order roll-yaw 

system can be evaluated by determining its character is t ic  multipliers 

h i  defined by 

( 3 . 3 - 2 )  

( 3 . 3 - 3 )  

i 

where ( x  . ) ,  i = 1 ,  2 * - 6 a r e  a fundamental set  of solutions of the sys-  

tem,  each corresponding to a particular se t  of initial conditions, called 

normal solutions, and Q is the frequency of parametr ic  excitation. 

-1 

1: - bxcept in speciai cases ,  a sixLii-urGei- a y ~ k i i i  w i l l  h a v e :  D L  u L 3 -  

tinct 1. which in general a r e  complex numbers. 

greater  than one in magnitude, that par t  of the solution will grow with- 

out bound, until limited by physical nonlinearities not implicit in the 

original equations. 

If any of them a r e  
1 

The characterist ic multipliers a r e  a logical extension of constant- 

coefficient techniques to systems with periodic coefficients. 

system with constant coefficients (zero  pitch amplitude), the Floquet 

procedure leads [Appendix C ,  Equation (C- 13)] to character is t ic  

multipliers 

For  a 

1. 1 = exp (si g) ( 3 . 3 - 4 )  
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where s .  a r e  the characterist ic roots of the l inear system, and s1 is 

the frequency of variation of the coefficients. Equation (3.3-4) can be 

used for program checkout and a l so  for  numerical stability evaluation 

1 

of constant coefficient equations. 

If, for a particular set  of values of K1, K2, 5 ,  on, there exist one 

o r  more  X i  such that I A i l  

with infinitesimal roll and yaw angles,  will not remain planar ,  because 

roll and yaw amplitudes will build up. 

1 then an initial planar pitching motion, 

The procedure for determining the character is t ic  multipliers,  

given in Appendix C,  involves using a computer to numerically inte- 

grate the sixth-order system over one period of the pitch motion. 

integration i s  performed six t imes,  starting with different initial con- 

ditions. 

matr ix  formed from the solutions. 

The 

The multipliers appear as the eigenvalues of a sixth-order 

The computer program requires between 3 and 10 minutes on the 

IBM 7094, depending on the values of on and K1. 

computer time required makes i t  necessary to use the perturbation- 

solution technique of Section 3 .  1.4 to locate regions of possible 

instability . 

The large amount of 

3 . 3 .  1 Selection of Parameters  fo r  Examination 

It was shown in Section 3.1.4 that, fo r  small amplitudes of para- 

metr ic  excitation, instabilities may occur where 

s - s  i j  a = *  
P n (3 .3-5)  
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where s i ,  s 

ing constant-coefficient system, and n is a positive integer. 

a r e  any two of the character is t ic  roots of the correspond- 
j 

In particular,  parametric resonance occurs  fo r  

w = 2w 
P 

( 3 . 3 - 6 )  

with w one of the three frequencies of the undamped sixth-order roll- 

yaw system. 

In the present study, attention is confined to possible unstable 

points in the K1-K plane defined by Equation ( 3 . 3 - 6 ) .  Equation ( 3 . 3 - 5 )  

predicts other loci of possible instability which should be studied in a 

more  comprehensive investigation. Kane's resul ts  for the rigid body 

lead us to the conclusion that the double-frequency line given by 

Equation ( 3 .  3 - 6 )  is the most promising place to begin. 

2 

2 In the selection of the body stiffness parameter  wn , two con- 

siderations l imit  the choice: 

A .  Since we a r e  considering a "flexible body," a s  opposed to 

"two loosely coupled rigid bodies," we will r e s t r i c t  w to 

be somewhat higher than the rigid-body frequencies. The 

K - K  format is not particularly suitable for an investiga- 

tion of the behavior of an extremely flexible system. 

The computer time required to integrate over one cycle of 

w a t  given accuracy is proportional to w P n' 

which wn 5 10 a r e  prohibitively expensive. 

n 

1 2  

B. 

and cases  for 

3 .  3 .  2 Location of Lines of Paramet r ic  Resonance 

The parametr ic  resonance condition, Equation ( 3 . 3 - 6 ) ,  occurs  

where a root 
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s = io ( 3 . 3 - 7 )  

of Equation ( 3 .  2 - 4 )  coincides with the small-amplitude pitch frequency 

W 3(K1 t K2) 
a = - -  P -  ( 3 . 3 - 8 )  2 2(1 t K1K2) 

To find where resonance occurs ,  the simplest  procedure i s  to t rea t  w 

as a parameter .  We substitute Equation ( 3 .  3 -7 )  into Equation ( 3 . 2 - 4 )  

and eliminate K1 by Equation ( 3 .  3 - 8 ) .  The result  is the following 

2 quadratic for K 

4 2  2 6 (A  t B ) ( 4 w  - w t 4)K2 

4 1  

4 ( A t  B)(4w4 - llw 2 ) t C(3  t 4w ) K2 

t / -2w2(3  t 4 o 2 ) ( A  t B )  - 7~ 2 C] = 0 
1 ( 3 . 3 - 9 )  

where 

2 A =a," t 4 - w 

2 
W n 

2 
B = - -  

2 c =  ( 2  - w  t w : t 4  )( -w 2 - 4 ) t 4 w n  

Equation ( 3 . 3 - 9 )  can be solved for K for given w and w 2 n' Then K1 is 

obtained, inverting Equation ( 3 . 3 - 8 )  as 

4w2 - 3K, 
L K1 = 

3 - 4w2K2 
( 3 . 3 -  10) 
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The locus of parametr ic  resonance is a line in the K -K  

for  w = 1, 5 and 10 in Figures 3 .  17 to 3 .  19. 

intersection of the infinitesimal stability boundaries and terminates on 

the line K A sec-  

ond branch of the curve,  in the modified Delp region, is not shown. It 

was shown in Section 3.2.4 that most ,  i f  not all, of the modified Delp 

region is unstable if  any damping exis ts ,  so that it is not important to 

plane, shown 1 2  

The curve begins at the 
n 

= 1. w varies  from zero  to -/2 along the curve. 2 

study it. 

As an2 tends to infinity the paramet r ic  resonance curve approaches 

the shape given in  Figure 3.6 for the rigid-body resonance line. 

3 . 3 .  3 Stability of Planar  Pitching Motion of the Undamped System 

Having located the resonance l ine,  we can evaluate stability by the 

Floquet procedure for various values of K1 and K2 on and near  the 

line. 

one degree half-amplitude of pitch motion. 

decimal accuracy) a r e  all unstable and points some distance away a r e  

stable. 

Figures 3.17 to 3.  19 show the resul ts  for w = 1, 5 and 10 for a n 

Points on the line (to s ix  

It is  clear that, as  in the rigid-body case ,  a narrow str ip  exists in 

which planar pitch motion is impossible for even a one-degree ampli- 

tude of motion. 

The characterist ic multipliers h .  fo r  the stable cases  were  found 
1 

to consist of three complex-conjugate pa i r s  on the unit c i rc le .  Charac- 

te r i s t ic  multipliers for the unstable cases  consist of two conjugate 

pa i r s  and two rea l  roots,  one of which is slightly less  than -1,  indi- 

cating instability. The fact that the instability a r i s e s  f rom the 
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parametric resonance condition o 
P 

the constant- coefficient case (zero 

ter is t ic  roots is 

= o is indicated by the fact  that in 

pitch amplitude), one of the charac- 

0 
s = 1 0  = 1- . P  

2 

and, f rom Equation ( 3 .  3 - 4 ) ,  the corresponding multiplier is 

The characterist ic multipliers for one degree pitch amplitude a r e  

not very large.  

the range 1 -= 1 X 1e1.05 corresponding to a growth of 5 percent o r  l e s s  

pe r  cycle. In a medium-altitude satellite with a pitchperiod of 4 hours, 

For  one degree pitch amplitude, they typically l ie  in 

the roll-yaw amplitude would take about 57 hours to double, at the rate 

of 5 percent per cycle. 

Figure 3 . 2 0  shows how the character is t ic  multiplier var ies  as the 

The iner t ia  parameters  a r e  varied along the line A-A of Figure 3. 17. 

unstable region for this case has a width of about 0. 02  in K 

cent of the stable range, corresponding to a small but perhaps quite 

significant range of inertia ratios,  

o r  2 per-  2’  

3 .  3 . 4  Effect of Damping on Stability of Planar Pitch Motion 

Damping i s  one of the chief differences between the idealized 

rigid body considered by Kane and the somewhat l e s s  idealized flexible 

body considered here .  

It is known that a system of l inear equations with periodic coeffi- 

Usually not much damp- cients may be stabilized by adding damping. 

ing i s  required. 

Mathieu equation, so that it has the appearance 

For  example, if a damping t e r m  is added to the 
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The transformation 

x = X exp (-5wnt) 

leads to 

(3. 3-11) 

J 2 - 5 ) - a cos 2t 5;= 0 

which is in the exact Mathieu form. 

such that 5; grows 5 percent in time IT, then Equation (3. 3- 11) indicates 

that x(t) will  still  be stable unless 

If the coefficients an, a ,  5 a r e  

1.05 exp ( - C w n r )  Z- 1 

If wn = O( 1) (natural frequency comparable to parametric frequency) 

then x i s  stable even for 5 as  low a s  about 

When damping i s  present,  most of the characterist ic multipliers 

In unstable cases ,  there a r e  two real  a r e  inside the unit circle.  

roots,  one slightly less  than -1.  

Some of the results of applying the Floquet procedure to damped 

systems a r e  shown in Figures 3.21 and 3.22. Only cases on the line 

of parametric resonance were considered. The bar  graphs show the 

portions of the resonance line which a r e  stabilized by the addition of 

various amounts of damping. 

A thorough investigation for 5 = 0. 1 ,  0. 5 and 1.0 was car r ied  out 

= 1, but only 5 = 0. 5 was considered in detail for w = 5. Addi- n n for  w 

tional data for w = 5, not shown on the graph, indicates that the trend 

i s  similar to the case of w = 1; a t  higher values of damping there  are 

fewer unstable points. 

n 

n 
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The curves of parametric resonance were derived for the undamped 

case. 

possible, though unlikely, that some of the points in the K - K  

which were stabilized by the addition of damping a r e  only stable be- 

cause they a r e  not on the resonance line in the damped case,  and that 

unstable points exist nearby. 

They presumably shift slightly when damping i s  introduced. It i s  

plane 1 2  

Conclusions which can be drawn from Figures 3.21 and 3.22 a r e  

For fixed roll-yaw frequency a, systems having higher 

w require more  damping to stabilize them. For  w = 10, 

no data is  shown because no realist ic damping will change 

the characteristic multiplier even 1 percent. 

A. 

n n 

This result is  not surprising and can be predicted from 

constant- coefficient theory. 

tion of a system a r e  far  apart  in frequency, introducing 

damping in the high-frequency mode adds practically no 

damping to the other. 

Fo r  a fixed value of w 

damping to stabilize them. 

what would be expected on the basis of the linearized 

equations. 

damp when it is closer to the high frequency mode. 

reason for this phenomenon appears to be that the 

parametric-excitation t e rms  in the equations become 

more significant when w i s  increased. 

Equations (B- 11) in Appendix B shows that the parametr ic  

When two modes of oscilla- 

B. systems with higher w need more 

This result  i s  the opposite of 

n’ 

The low-frequency mode should be easier  to 

The 

Examination of 



7 5  

excitation t e rms  do not change when w 

strong functions of K1 and K2, and therefore of w. 

The unstable regions for high w a r e  surprisingly pers i s -  

tent. Even for a relatively low w of one, and a relatively 

high damping, g = 1, a substantial band of unstable points 

still  exists along the resonance line. Bodies in this region 

have a distinctly non- spherical  shape and relatively strong 

gravity-gradient restoring torques. They might otherwise 

be suitable candidates for satellite configurations. 

Figure 3.20 shows the effect of adding various amounts of damping 

changes, but a r e  n 

C. 

n 

for the case w = 0 . 7 ,  w = 1. It seems evident that the resonance 

band, though it may become narrower,  pers i s t s  even for  very high 

n 

values of damping, and fairly low natural  frequency. 

It must be pointed out that even the case wn = 1 represents  a rela-  

tively s t i f f  system because, as seen in the third of Equations (3.2-18), 

gravitational- centrifugal effects add stiffness so that the uncoupled 

frequency is -,/a: t 4 , while the natural  frequency considering only 

elastic effects would be wn. 

The "rigid-body" frequencies a r e  thus in the neighborhood of one 

orbit ra te ,  while for w = 1 the l le las t ic l l  frequency is of the order  of n 

5 2 . 2  orbit  ra tes .  

Similar studies should be car r ied  out on bodies of lower stiffness, 

but the present format and the use of the K1-K 

really appropriate. 

parameters  a r e  not 2 
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3 . 3 . 5  Summary and Conclusions 

In summary, i t  has been shown that the impossibility of pure 

pitching motion, found byKane for a c lass  of rigid bodies, occurs also 

for a class of flexible bodies and that it i s  not readily removed by 

damping. 

stability, a r e  not adequate in this case. 

Linear analysis techniques, which do not predict the in- 

The entire discussion has presupposed a system free of distur- 

bance torques, so that pitch motion took place a t  the frequency of f ree  

pitch oscillations. 

forced pitch oscillations due to orbit  eccentricity o r  other disturbances. 

It i s  possible that analogous instability phenomena could occur in such 

A case of at least  equal importance is the case of 

a case. 

The class of satellites studied i s  unrealistic principally because 

they have no flexibility o r  damping about the pitch axis. 

that the addition of a pitch spring would cause pure planar motion to 

become stable for a l l  inertia ratios. 

ever ,  that two bands of unstable inertia ratios would emerge, cor re-  

sponding to the two pitch frequencies. 

It i s  possible 

It seems much more likely, how- 



Chapter 4.  Static Behavior of Long Wires and Rods Attached 
to Verticallv Stabilized Satellites 

This chapter examines the effect of small  centrifugal and 

gravitational forces on the flexible appendages of a vertically-oriented 

satellite. The forces involved are very small, but can be significant 

in very flexible space structures.  

4. 1 Internal Forces  in Verticallv- Stabilized Satellite 

Consider the vertically-oriented satellite of Figure 4.  1. Coordi- 
A 

nate axes B. pass through the center of mass. 

directed along Bi. 

that B always points toward the ear th 's  center ,  and B is normal to 

the orbit plane. B is then tangent to the assumed circular orbit. It 

may be shown (Chapter 3) that such motion is possible only when Bi 

Unit vectors B. are 
1 1 

The satellite is assumed to move in such a manner 
A A 

3 2 
A 

1 

a r e  principal axes.  

It is shown in Appendix A ,  Section A. 4 ,  that a mass  point m in 

such a satellite has acting on it a constraint force given by 

- 2 "  A 

F C = ma 0 (x2B2 - 3x3B3) (4- 1) 

where 

o 

x 

is the orbital angular frequency 

a r e  the coordinates of m along 
the axes Bi 

0 

i 

- 
F is the resultant force needed to hold m fixed relative to the 

C 

orbiting, rotating satellite. 

77 
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B,  (TANGENT TO ORBIT) 

(NORMALTO 
ORBIT PLANE) 

\/’ 

Figure 4.1. Coordinate System 
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4 .  2 Elastically Deflecting Mass Point 

Let us suppose that m is suspended elastically so that it can 

deflect relative to the satellite, and denote its location by 

m'Yi 
xi = I i  t yi - - M (4 -2 )  

where 

represent the location of the mass  point for 
zero elastic deflection 'i 

represent the elastic deflection components Yi 

M is the total satellite mass  

The third te rm in Equation (4 -2 )  results f rom the fact  that xi a r e  

measured relative to the center of mass ,  which shifts when m moves. 

It is necessary to assume: 

A. That the deflections of m do not rotate the principal 

axes of the satellite, so that the axes B. a r e  still  

principal axes. 

1 

B. That only one m a s s  moves, o r  that, if two o r  more 

move, they move symmetrically so that they can be 

replaced by a single equivalent mass, m' .  

For  simplicity we assume that the elastic restoring force is  given 

i. e.? that the restoring force in a particular direction i s  a nonlinear 

function of the elastic deflection in that direction. 

Combination of Equation (4- 1) with (4 -3)  yields three scalar  equa- 

tions for  the elastic deflections y 
i 

a 
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[k2+ 

b 3 - 3  

Equation (4-4) says 
A 
B direction. 1 

Equation (4-5) says 

simply that there i s  no constraint force in the 

n 
that the constraint force in the B2 direction is 

proportional to the distance of the neutral point f rom the orbit plane, 

p 2 .  

t e rm appears due to gravitational-centrifugal effects, increasing the 

elastic stiffness and reducing the deflection y2 for given I 2 .  

In addition to the spring force, k2, an additional spring stiffness 

Equation (4-6) i s  more  interesting. Consider f i r s t  that k 3 i s  a 

constant. 

can be reduced by gravitational effects which produce a negative spring 

force,  so that the system is  like that of Figure 2. 2 .  

Then Equation (4-6) states that the spring restoring force 

The deflection 

(4-7)  
- l 3  

y 3 -  kg - (1-E$) 7 3mw 
0 

becomes larger  for given k 

for 

a s  mw is increased, and is unbounded 3' 0 

0 
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For 

m'  1 - -  7 M 3mw 

k 3  

0 

Equation (4-7) predicts a negative deflection position 

-1 -2 

This position i s  one of unstable equilibrium because Equation (4-6)  

shows that the overall spring constant is a negative number. 

The behavior described by Equations (4-7) and (4-8) is analogous, 

to some extent, to the behavior of an unbalanced rotating shaft. The 

reader is  referred to Reference 4.  1 for details. 

4 .  3 Nonlinear Deflection of a Cantilever Under Gravitational Loading 

We have shown that Equation (4-6) has no stable solutions for 

Z- k 3  0 , k3  constant 2 
0 

which can occur for sufficiently small  k3. 

For the case k g  = k3(y3), stable solutions wil l  exist if the non- 

linear spring has a "hardening" characteristic. 

The negative gravitational spring force will remain linear with 

Y3 fo r  
y3 orbit radius 

which is always satisfied, but the elastic spring can stiffen until it 

balances the negative gravitational spring. 
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The most practical  case is that of appendages with tip m a s s e s ,  in 

the shape of cantilever beams (Figure 4 .2 ) ,  such a s  might be used to 

form an inertia a r r ay .  

The nonlinear deflection of a cantilever beam under load applied 

at the t ip,  normal to the undeformed position, i s  solved in Reference 

4.  2 in t e rms  of elliptic integrals. 

gation a r e  shown in Figure 4 .3  with the modified notation: 

The graphical results of the investi- 

P = applied force 

L = beam length 

A = reduction in length 

y3 = beam deflection 

E1 = flexural rigidity of beam 

The resul ts  of the calculation can be used to find the equilibriumpoints 

at which the force applied to the beam is balanced by the elastic r e -  

storing force. The condition i s ,  f rom Equation ( 4 - 6 ) ,  

The simplest  case i s  l 3  = 0 ,  corresponding to a cantilever at the 

radial  location of the center of gravity. Define 

a = 3mo 2(1 - E ) ~  L3 
0 

. 1/3 E1 

0 
= [ 

(4-9) 

L is the length above which a beam with given EI, m ,  o is unstable 

in the straight configuration. Then the equilibrium points are defined 

c r  0 



' 0  
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DIMENSIONLESS DEFLECTION 

Figure  4 . 3 .  Resul ts  f r o m  Reference  4.2  f o r  L a r g e  Deflections 
of a Cantilever Beam 
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by the intersection of the curve of Figure 4.3 with the straight line 

(not shown) 

The results a r e  plotted in Figure 4.4 

what approximate but the tip locations a r e  accurate.  

deflection for lengths only slightly greater  than the cr i t ical  length. 

The elastic curves are some- 

Note the drast ic  

The stable equilibrium deflection for P - 0 is of course zero for  3 -  

a l e s s  than 3,  ( L  e Lcr) the cri t ical  value for which the elast ic  spring 

and the gravitational spring cancel for small  deflections. 

For  the rod material  used on the NASA Radio Astronomy Explorer 

(Reference 4. 3), attached to a heavy satellite in a 450 mile orb i t ,  the 

cri t ical  length corresponding to a = 3 fo r  a 5 pound tip weight i s  

360 feet. 

It should be noted that equilibrium deflections exist  for  both posi- 

tive and negative y 3 

3’ odd functions of y 

because both gravitational and elastic forces a r e  

For  cantilevers which are not horizontal in the undeformed state 

the applied force has a component parallel  to the undeformed beam as 

well a s  along it. 

large deflection of a cantilever under general planar tip loading, 

resul ts  of Reference 4.4 could be used to plot deflection curves for 

more  general cases .  

Reference 4.4 gives the closed fo rm solution for  

The 
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4.4 Discussion of the Deflection of a Beam With Distributed Mass 

We close this chapter with a brief examination of the more  difficult 

problem of the deflection of a cantilever with distributed mass. It is 

well known that the deflection curve i s  given for small deflections by 

4 

dx 

EI - ,=w d u  (4- 10) 

where w i s  the distributed loading on the beam per  unit length, E1 is 

the flexural rigidity, u is  the deflection, and x is length along the 

beam. 

We res t r ic t  our attention to the case where beam mass is negligible 

compared to satellite mass ,  and where the beam is in theorbi ta l  plane, 

making an angle 8 with the horizontal (Figure 4. 5). Then Equation 

(4-1) yields 
A 

2 
= - 3 p w  (X sin 8 t u COS e )  

0 

and, f rom Equation (4 - lo ) ,  

2 4 

dx 

EI d u  - 3poO cos eu = 3po 2x sin e 
0 

(4- 11) 

where p ( x )  is beam mass  per unit length. 

The solution to this problem can be visualized readily because it 

is an exact analog of the problem of the forced vibrations of an elast ic  

beam, for which beam deflection v is given by 

io t 
2 

a v  E1 a v  t p 
4 

= f(x)e 
ax a t  

(4- 12) 
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Separating variables in Equation (4- 12) we put 

iw  t v(x, t) = F ( x ) e  

and obtain 

d4V 2, E1 7 - P W  v = f(x) 
dx 

(4- 13) 

which is identical in fo rm to Equation (4- 11). 

Figure 4. 5 is an analog of the forced vibrations of an elastic beam and 

a solution can be obtained as the sum of a se r i e s  of normal modes of 

the beam. 

Thus the problem of 

The case 8 = 0 corresponds to the problem of f r ee  vibrations of a 

Equation (4-  11) fo r  8 = 0 is  known to have nontrivial solutions beam. 

only for discrete  values of the quantity 3w 

log to the natural frequencies of the beam. 

the only solution is 

2 
0 ’  

corresponding in the ana- 

2 
0 ’  

For  other values of 3w 

u(x) = 0 (4- 14) 

It i s  natural to conjecture that, as in the lumped-parameter case  of 

Section 4.3, the solution, Equation (4- 14),  to the distributed-parameter 

problem is unstable above a critical value of w and large-deflection 

theory must be used. 

2 
0 ’  



Chapter 5. Pitch Libration of a Wire Satellite 

Let us suppose it is  feasible to construct and place in orbit  a 

satellite consisting of a long flexible beam o r  wire. 

been seriously suggested a s  a passive communication reflector 

(Reference 5. 1). 

attitude of the wire and what will be the elastic motion if the wire is 

long enough to be affected by the gravitational gradient? 

Such a device has 

We pose the question: what will be the equilibrium 

As a preliminary to a possible future examination of the general 

three-dimensional problem, let us consider the plane motion of the 

wire in the plane of i ts  assumed circular orbit. 

5. 1 Coordinate System 

Consider the coordinate system of Figure 5. 1. Orbital position is 

denoted by the rotating vector KO rotating at the orbital angular veloc- 

ity w k, where k i s  a unit vector out of the paper. The xy coordinate 

system with unit vectors i ,  j is rotated through angle 6 f rom the local 

A A 

0 
A A  

vertical. 

Length along the wire is measured by the coordinate x. Small in- 

plane elastic deformation is denoted by y(x). Mass distribution is p(x). 

The location of the origin and the orientation of the x-axis (the 

angle e)  a r e  defined by: 

Jxp dx = 0 

/yp dx = 0 

/.yp dx = 0 (5- 1) 

90 



EARTH 
CENTER 

Figure 5- 1 .  Coordinate System 
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That i s ,  the origin is the center of gravity and the angle 8 defines the 

axis about which the elastic motion has zero angular momentum. 

y = 0 ,  the wire is a straight line inclined a t  angle 8 to the vertical .  

Fo r  

5. 2 Bending Equation 

The wire i s  considered to be an ideal Bernoulli-Euler beam with 

mass  distributed along its elastic axis.  

free-body diagram (Figure 5.2) ,  we derive the relationships 

From the usual beam-element 

aM - = v  ax 

where 

M is bending moment 

V is  the shear 
- 
F is the gravitational force vector 

per  unit mass. 

is the position of a mass  element. 

The linearized moment- curvature relation is 

2 
M =  E I q  

ax 

(5-2) 

(5-3) 

where E1 denotes beam flexural rigidity. 

(5-2) ,  (5-3) and (5-5) yields the beam elastic equation 

Combination of Equations 

(5-5) 
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A 

M 
n M+AM M 

Figure  5 - 2 .  Free-Body Diagram of Beam Element 
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5. 3 Rigid Bodv Equations 

Rigid-body rotational and translational equilibrium yield 

j Q 2  dxtto -i, Q 2  Fp dx 

1 -I 1 
(5-7) 

5.4 Scalar Equations of Motion 

The gravitational force F i s  obtained from the general expression 

[Appendix A, Equation (A-5)] by putting 

e 2  = - e  

x3 = -x x l = y ,  x 2 = o ,  

A A A  A 
B1 = J , B 2 =  -k 

The resul t ,  correct  to the first  power of 

(satellite length 
orbit radius 

is 

2 3(x cos e - y sin e ) ’ !  A F =  -ao 1 - R j i ( ~ o  cos 0 t x)i t ( - R ~  s in  e t y)j  
0 

(5-9 

The derivatives of K and R 

the general formula for differentiating a vector rotating with angular 

velocity W 

a r e  obtained from Equation (5-4),  using 
0 

. 
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Results are:  

- / &  A 
R = 0 R (s in  B i t  cos  ej )  
0 0 0  

(5-10) 

Substitution of Equations (5 -9)  and (5 -10)  into (5-6),  (5-7)  and 

(5-8) and use of the conditions of (5- 1) yields sca la r  elastic and rigid 

body equations: 

I 2 2 2 = -p(x)[  i; - (oo t it) y t ix t wo y t ho sin e (x cos e - y s i n e )  

(5-11) 
and 

(5- 12) 



Boundary conditions on Equation (5- 11) a r e  that the ends of the beam 

a r e  f ree .  

where 

I Dsf/ Q 2  x 2 p dx 

-I 1 

3 
a 2 Y  = = o a t  x = -I 1, p 2 .  
ax ax 

(5- 13) 

The translational equation (5-7) reduces to an identity because a 

circular orbit has already been assumed. 

5. 5 Separation of Variables in Beam Equation 

Assume a solution of Equation (5-11) in the form 

where the cp (x) a r e  the normal modes of a f ree- f ree  beam having 

mass distribution p(x). qn(x) a r e  known to satisfy (Reference 5.2) 

n 

(5- 16) Q 2  $;It = 0 a t  x = -I1, = 

(P r imes  denote derivatives with respect to x. ) 

The $n also satisfy the orthogonality conditions 

qm5$p dx = M n 6 mn 
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EIq, dx = o n ‘M n 6 mn 

1 

(5- 17) 

where 

6 is the Kronecker delta, and on is the natural  frequency of the mn 

wire  in a uniform gravitational field. 

The elastic mode shapes of a f ree- f ree  beam also satisfy 

(Reference 5. 3) 

( 5 -  18) 

We substitute Equation (5- 14) into Equation (5- l l ) ,  multiply by 9 (x)  

and integrate with respect to x f rom -1 

n 

to 12. Using Equation ( 5 -  17) 

we obtain 



Or ,  noting that the integral vanishes by Equation (5- 18) 

w - 2 w O i  - b 2  - 3w sin e q n =  o (n"  0 " 1  (5- 19) 

which i s  a set  of equations for the elastic coordinates q n' 

5.6 Discussion of Equations of Motion 

The problem posed is described by Equations (5-19) and (5-12). 

Equation (5-12) can be rewritten using (5-17) as 

2 16 + 3w0 I sin 8 cos e 

= -2(0 t o o ) x M  q q - ( e  - 3w 
2 

n n n  0 n 

(5- 20) 

The te rms  on the left-hand side make up the pitch equation for a 

rigid body. The te rms  on the right, second order  in the smal l  elastic 

amplitude qn, show that elastic motion excites rigid-body motion both 

directly (a t e rm)  and parametrically. 
0 

Equation (5- 19) shows that, for  the wire satell i te,  elastic motion 

is excited only parametrically. This somewhat surprising conclusion 

probably applies only to the present case ,  in  which there  are no tip 

weights and the wire has a cross-sectional moment of inertia per  unit 

length (rotary inertia) which is small .  Reference 5.4  shows that a 

satellite consisting of a weightless rod with a tip weight, attached to a 

rigid body, has linearly coupled elastic and rigid-body motion. 

5 .7  Applications 

In practical  applications, it may be desirable to use the flexibility 

of the wire to damp out an initial rigid-body motion. A necessary 
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condition is that rigid-body pitching motion [e( t) oscillatory] must 

excite elastic motion. 

oscillations and determine the elastic response. 

We will therefore consider small  rigid-body 

Equation (5-20) r e -  

duces approximately to 

e t 3 w o e = o  2 

A suitable solution is 

e = -e sin f l u  t 
0 0 

(5-21) 

Change the time variable to 

Then Equation (5- 19) becomes, for small 8 

(5- 22) 0 

2 
qn 450, dqn 

fi wo 
7+ dz 

where an assumed viscous damping factor has been introduced. This 

i s  a Mathieu-type equation with damping. Introducing 

we obtain 

2 
n 4w 

3w 
a =  7(1 - c2)  

0 

(5-23) 

0 -2q = _L_ 

fi 
(5-24) 
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This is  the standard form of Mathieu's equation, predicting that 
- 

will grow without bound if the coefficients l ie in an unstable region qn 

of the Mathieu stability char t  (Figure 5. 3). 

Unstable growth of will not insure that substantial elastic 
- 
% motion will occur ,  because, from Equation (5 -23 ) ,  qn i s  related to 

by a factor which decreases  exponentially with time. For  q to grow 

without bound [on the basis of the l inearized equation, (5-22)] we r e -  

quire (Reference 5. 5) 

n 

(5-25) 

where X i s  the characterist ic multiplier (defined in Appendix C) ,  cor- 

responding to the particular values of the coefficients. 

In referring to "unbounded growth" of qn, we mean only that 

Equation (5-22) will predict such growth so long as 0 varies period- 

ically a s  indicated by Equation (5-21). When q becomes sufficiently 

la rge ,  the q 

Equation (5-21) does not hold. 

elastic modes is not sufficient to guarantee good damping of rigid-body 

motion, but i t  is a necessary condition. 

n 

terms in Equation (5-20) can no longer be ignored and n 

Unstable parametr ic  excitation of the 

There are an infinite number of unstable regions in the a -q  plane. 

For small q ,  they l ie  near the l ines a = 1, 4 ,  9 . To obtain a physi- 

cally realist ic wire length, we des i re  a fairly high value of the natural  

frequency parameter  a. 

plot of the unstable region beginning at q = 0 ,  a = 9.  

Figure 5 .4  (Reference 5 .6)  shows a detailed 



a 

t-* 
Figure 5. 3. Stable and Unstable Regions 

fo r  Mathieu Equation 



Figure 5.4. Detail of Mathieu Stability Chart  Showing Curves 
of Constant Characterist ic Multiplier 
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For  small damping, with a = 9 ,  Equation (5-24) gives 

-- w 
' 2 7  = 2.60 n w = p -  0 

Select a realistic 5 = 0.01. Then we require ,  f rom Equation (5-25) 

X exp (0 .09)  = 1.0942 

Figure 5,4 shows curves of constant h .  It is evident that X 5 1. 1 

requires 

o r ,  approximately - 

so that excessive amplitude of rigid-body motion is  required to 

achieve energy t ransfer  to the elastic mode. The same is t rue  for  

lower values of 5 .  The conclusion also holds for  the unstable region 

beginning at a = 2 and for all higher a .  

For  a wire with a frequency parameter ,  a near  unity, unstable 

parametr ic  excitation can be realized for  reasonable amplitudes. Cal- 

culations s imilar  to those above show the solution of Equation ( 5 - 2 2 )  is 

unstable for a = 1, for 0 21 .5  degrees ,  and for 5 50.03. The physical 
0 

configurations corresponding to a = 1 ,  1 w 2 ( > ' 3 / z ) w 0 ]  a r e  somewhat 
I n  

unrealistic. F o r  the case of a 100 minute orbit  (altitude about 450 

miles) ,  the required length of a 0 .002  inch diameter steel  wire is 

about 120 feet. 

wire is only about 10 

The gravitational and centrifugal tension is such a 

- 8  
lb, so the configuration could be realized if it 

proved possible to deploy it. 
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The rod o r  wire configuration i s  unusual in that its natural  

frequency i s  not changed by placing it in a non-uniform gravitational 

field. 

l a r  velocity calls for considerable fl imsiness.  

bining the wire with gravitationally unstable rigid bodies such as rigid 

cross-members  a t  the ends of the wire would allow reduction in con- 

figuration size.  

Lowering the frequency to the neighborhood of the orbital  angu- 

A configuration com- 

5.8 Conclusions 

A preliminary examination of the gravity- stabilized rod satellite 

has shown that pitch mode damping can be achieved if the system 

elastic and inertia parameters  a r e  selected correctly.  The required 

configurations a r e  thin wires hundreds of feet long and would be diffi- 

cult to deploy. Three-dimensional motion has not been examined. 
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Appendix A. Forces and Torques Produced 
by the Gravitational Gradient 

In this appendix, the forces and torques exerted by the ear th 's  

gravitational field on a satellite a r e  derived for use in the body of the 

dissertation. The derivation is straightforward, and appears in the 

l i terature (Reference A. 1 for example). It i s  included for complete- 

ness and to maintain some consistency in notation. 

A. 1 Coordinate System 

The coordinate system is  that of Figures 3. 1 and 3.2 of the text, 

repeated here a s  figures A. 1 and A . 2 .  

The axes B. a r e  referred to a rotating frame 0. through angles Bi 
1 1 

shown in Figure B.2. Oi a r e  defined as  follows: 

0 is tangent to the circular orbit ,  pointing in the 
direction of motion 

0 i s  normal to the orbit  with the opposite sense to 
the orbit  angular velocity 

0 is directed downward, completing the right-hand 
triad. 

The noninfinitesimal rotations 8. a r e  taken in the sequence 8 3 ,  e2, e l .  1 

Bi can be considered loosely a s  fixed in the satellite body; their 

precise definition i s  given separately in each chapter of the body of 

the dissertation. 

A. 2 Gravitational Force on a Mass Point 

Consider the system of Figure A. 3. The mass  center of a gene- 

ra l  system of mass  particles moves in circular orbit  about a spherical 

earth. The position of a general mass  point is denoted by the vector 
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Figure A. 1. Orbit Reference Coordinate System 



Figure A. 2. Rotations Defining Body Coordinates 



Figure A. 3 .  Definition of Coordinate Vectors 



- 
R tneasured from the center of the earth.  

the mass center,  and 7 is  the vector location of the mass  point relative 

R denotes the position of 
0 

to the center of mass. 

Newton's law of gravitation gives the gravitational force on a 

mass  m a s  

where 

R is the scalar  magnitude ofK 

K i s  the gravitational constant for the earth 

I I denotes the scalar magnitude of a vector 

- - p ,  expanding by the binomial theorem, we find 
- 

F o r  

( A - 2 )  

Parametrizing in the coordinate system of Figure A. 2 ,  we put 

- h A A 
p = x B  t x B  1 1 2 2 t X 3 B 3  ( A - 3 )  

A 
where the B .  a r e  unit vectors along the respective axes B From 

Figure A . 2  

1 i '  

h A 
s i n 0  - B2 cos 0 s i n 0  - B 3  cos €I2 cos  e l  

0 0 2 2 1 

( A - 4 )  

Substitution of Equations ( A - 3 )  and ( A - 4 )  into ( A - 2 )  gives the com- 
A 

ponents of F along Bi. The expression for  

body of the dissertation for the special case 

is only needed in the 
g g 



e l  = e3  = o 

in which case 

3(x1 sin 0 - x3 cos  €I2) 2 

0 
g - 7  R -mKII 0 - 

- F -  

A ]  

A A 
' [(xl t Ro sin 0 )B1 t x B t (x3 - Ro cos e2)B3 2 2 2  

to f i r s t  order  in the small  quantity 

For  the assumed circular orbit 

s o  

F =-a2[l-, 3(x1 sin e2 - x3  cos 02) 

0 
0 g 

A A 
FRO sin t xl)B1 t x2B2 t (x3 - Ro cos 

(A-5) 

This expression i s  used in Section 5.4, Chapter 5. 

A. 3 Inertial Acceleration of a Point Fixed in an Orbiting Satellite 

In the notation of the preceding section, le t  B. be the principal 
1 

axes of an orbiting body, and assume that there  is no relative motion 

between par ts  of the body, and that 

e l  = e2 - e 3 = o  - 

The body then rotates with angular velocity 
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- A 
w = - w  B 0 2  

The inertial acceleration of a point located by 

i s  then 

o r ,  in component form 
- A 2 A 
a = -wo2x l~1  t 0 ( R ~  - x 3 3  )B ( A - 6 )  

A. 4 Static Internal Forces  in an Orbiting Body 

A s  in Section A . 3 ,  consider that the satell i te i s  moving in c i rcular  

orbi t ,  with no motion relative to axes B . ,  1 and with 8 .  1 = 0. 

equation of motion of a mass  point m is 

Then the 

( A - 7 )  

where 
- 
F is  the gravitational force 

g 
a 
- 

is  the inertial acceleration of the point 

is the internal constraint force exerted on 
the mass  point by the r e s t  of the body 

- 
F 

C 

Setting 8 

( A - 7 ) ,  we obtain expressions for the components of F C . 
- 0 and substituting Equations (A-5)  and (A-6) into Equation 2 -  

Neglecting 

second-order t e rms  

- F = rnuo2(x2BZ A - 3x3B3) A 

C (A-8)  

This expression is used in Chapter 4.  
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A. 5 Gravitational Torque on a Rigid Body 

In the notation of the previous sections, the torque exerted by the 

ear th ' s  gravity field about the satellite mass center i s  given by 

( A - 9 )  

where the integral is  taken over the mass  of the orbiting body. Sub- 

stituting from Equation ( A -  1 )  and noting that 

from the definition of p, we obtain 

( A - 1 0 )  

correct  to the f i r s t  power of 

body length 
orbit  radius 

Expressions for  and a r e  available in Equations ( A - 3 )  and ( A - 4 ) .  

Let us assume that B. a r e  principal axes ,  so that 

0 
A 

1 

/xixj d m  = 0 i # j (A- 11) 

The moments of inertia of the rigid body are  defined by 

(A- 12) 

Substitution of Equations (A-3)  and ( A - 4 )  into Equation ( A -  10) and use 

of Equations (A- 1 1 )  and (A-  12) yields 
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3K 2 
02 3 ( I 3  - I ) sin 2e1 cos L =  

2 
2R0 

- 3K 
I L2 - -7(13 - 11) s in  20 cos  0 2 

0 
2R 

3K 
1 

Lg = '-3 ( I1  - 12) sin 20 sin 0 2 2R 
(A-13) 

0 

giving gravitational torques as functions of the attitude angles.  These 

expressions a r e  used in Appendix B to derive equations of motion for  

Chapter 3 .  



Appendix B. Derivation of Equations of Motion for Rigid 
and Flexible Gravitv-Gradient Satellites 

In this appendix, the equations of motion used in Chapter 3 of the 

text a r e  derived. The angular momentum principle is used in the 

derivation given, but all equations have been checked independently by 

the method of Lagrange’s equations. The derivation is straightforward; 

the only complication is that the pitch angle €I2 must be retained a s  a 

large angle for use in the stability studies of Section 3 .  3 .  

It is  convenient to proceed by deriving the equations for  the two- 

par t  flexible satellite of Sections 3. 2 and 3 .  3 ,  digressing at a suitable 

point to provide the equations needed for the rigid satellite of 

Section 3 .  1. 

The coordinate system for  the two-part satellite is shown in 

Figure 3 . 8 ,  reproduced here  as Figure B. 1. 

made up of two rigid bodies, a main body B and a subsidiary body B*. 

The rigid bodies have moments of inertia I. 

Bi, Bi*, defined so that Bi coincide with BiT when the elastic coordi- 

nate a is zero.  

The composite body i s  

4. 

Iil’ about principal axes 
.I, 

The axes B. a r e  referred to the local-vertical 0 1,  02, O3 coordi- 

g2, 9 1’ 3 
We adopt the convention that components of vector quantities per -  

taining to body B , carrying the as te r i sk  superscr ipt ,  a r e  always r e -  

f e r r e d  to axes BiT. 

B c a r r y  no superscript  and are  r e fe r r ed  to axes B 

1 

defined in Appendix A. nate system through the angles 8 

* 
.b 

Components of vector quantities pertaining to body 

i’ 
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SUBSIDI SUBSIDIARY BODY B* 

MAIN BODY B 

B1 

/ 

B3 B3* (NOMINALLY VERTICAL) 

Figure B. 1. Configuration fodT Study, Rigid Body B Coupled 
to Rigid Body B' Through Hinge Along Axis B1 
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B. 1 Terminology 

We define the following terminology: 

Li 

L. " 
1 

Mi 

Mi9' 
.I, 

J. 

w 0 . ' I .  i '  1 

.Id .a* 

Ii' Ii 

Ii' 

k 

C 

Components of gravitational moment on 
B,  along Bi 

Components .I. of gravitational moment on 
B+, along B ~ -  

4. 

Components of torque exerted by B-' on B 

J. 

Components of torque exerted by B on B". 

Components of body angular velocity 

Principal moments of inertia 

Ii t Ii" 

Stiffness of torsional spring between 
B and B" 

Angular damping constant of damper between 
B and B* (dimensions a r e  those of torque 
divided by angular ra te )  

B. 2 Dynamical Equations of Motion 

The dynamical equations of motion for  the two bodies (Euler ' s  

Equations), a r e  

I1bl - (I2 - I )w w (B- la) 3 2 3 = L 1 t M 1  

12Az - ( I3  - 1 1 ) ~ 3 ~ 1  = L2 t M2 (B- lb) 

I3G3 - (I, - 12)wlw2 = L3 t M3 ( B - l c )  



.I. .I. 

w1 w2 = L q  + M3“* 

(B- 2a) 

(B- 2b) 

( B - 2 ~ )  

B. 3 Kinematical Equations of Motion 

The body rates w. may be expressed in te rms  of the angular ra tes  
1 

0 .  by reference to Figure A. 2 ,  remembering that the 0. system ro- 
1 1 

1’  6 3 ’  tates with angular velocity -w about 02. To f i r s t  order  in 6 
0 

e 3 ,  they a r e  5 ’  

w1 = - sin e203 - w COS € 1 ~ 6 ~  
0 

w2 = e 2  - w 
0 

w3 = cos e 2 k 3  - e2el  - w sin e2e3  t w 0 
0 0 1  ( B - 3 )  

a, differ from those 1 ’  6 2 ’  
The angular ra tes  of B*, for small  0 

of B by the relative rotation a and also because the components a r e  

taken along different axis systems. They a r e  

-1. 1- 

w1 = a 1  t ;L 

4. .P 

w3 = w3  - e2a t w a 
0 (B-4)  



1 2 1  

I -  

K 

0 

- 

B.4 Gravity Torques 

The gravity torques L. on B. a r e  obtained by taking 8 and €I3 to be 
1 1 1 

small angles in Equations (A- 13). They a r e  

.- 

2 2 cos 8 

COS e2O1 2 e2e1 1 (I3 - 12) cos 2 

-(I1 - 13)  sin 8 

- ( I z  - 11) sin 8 
- 

(B-  5) 

where K,  R a r e  as defined in Appendix A. 
0 

K 2 
= wo 

0 

.I. .(r 

The gravity torques L .,- on B . ”  can be obtained directly f rom i 1 

Equations (B-  5) by putting 
.e. e,. 

Ii - I i 
The latter relation i s  only valid because 8 is the third rotation in 

instead of 

1 
rtr *a- 

the sequence, so that, i f  the ei described the rotation of Bi 

Bi, O 2  and 8 would have the same values. We obtain 3 
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B. 5 Constraint Relations 
J- 

The constraint moments M . ,  M." a r e  not independent, but a r e  
1 1 

related by action and reaction. F i r s t ,  we have 

M1 = -Ml* = k a t  cd (B-7) 

1 '  

2 3 

giving the spring and damper torques about axis B 

Equating constraint moments about axes B and B gives, for 

small  a ,  
.I. 

M = - M  ' +  M *a 2 2 3 

J. J. 

M 3  = - M i -  - M i a  

B. 6 Derivation of Equations 

Adding Equations (B-1)  and ( B - 2 )  two by two, and substituting 

from Equations ( B - 3 ) ,  ( B - 4 ) ,  (B-5) ,  and (B-6)  we obtain three second- 

order  equations in the four variables, e l ,  e 2 ,  e 3 ,  a .  

a large angle, but keep only f i rs t -order  terms in 6 1 ,  B 2  and 6 

We retain 8 a s  2 

3' 
The resulting equations contain the constraint moments only in 

the form 
J. .lr 

M2 t M: = M3*'.a 

r(. .I. 

M 3  t M q  = -M,*.a 

* Equation ( B - 2 c )  shows that M 3  a i s  second o rde r ,  but M *a must  be 

retained and can be evaluated from Equation (B-2b) a s  
2 

M *a = a I *G + 3w '(IT - I:) sin e2  cos e2  
2 1-2 0 1 

Speaking loosely, the three equations obtained describe the motion 

of the non-rigid system a s  a whole. To complete the description of 



the motion, we must consider the moments acting on one of the rigid 

bodies separately. A suitable choice i s  Equation (B- la) .  Substituting 

from Equations ( B - 3 ) ,  (B-5) and (B-7) into Equation ( B - l a )  we obtain 

a fourth independent second-order equation. Summarizing the resul ts  

of the above operations, the equations of motion are ,  in order  

1 t woe1) - 3w0 2 cos  2 e2e1 

t - 3w 0 ‘(1; - 1:) cos2 e2a t (1; - I:)(i2 - wo)2a = o 

(B-?a)  

2 ~iii, t ( 1 ~ 1  - 13’) - 30 0 sin e2 cos e2 = o (B-9b) 

.. 
I; c o s  e 6 - 6,  sin e 2 e 3  - e2e l  - e2e l  ( 2 3  

3 - 0 cos e i, e - w s ine2b3  t o o e l  
0 2 2 3  0 

- 1 k ( b 2  - )i t ct1;g2 t 3U “(1: - 1:) sin e cos e a = o 
OO 0 2 2 

( B - 9 ~ )  



1 LQ 

/ .. .. \ 

1 ~ [ 6 ~  - sin e2e3 - e2 cos  e 6 - 0 cos e2e3 t o  sin e 6 8 2 3  0 0 2 2 3) 

(B-9d) 
2 2  - 30 C O S  - ka - ch = 0 
0 

B. 7 Simplification 

Equations (B-9)  a r e  the general equations for the two-body satel- 

lite, for large 8 

case under consideration, for which 

They a r e  simplified somewhat in the particular 2' 

.I, 

I 2  = I1 

Ji: I3 = 0 (B-10) 

For  reasons given in Section 3.2. 1. 

We further simplify the form by introducing quantities K. de- 
1) 

fined by 

I1 - I2 K1 = - 
Ill - Iz' - 

I; I3 

121 - 1; I2 t I1 - I 3  
- - - 

I11 211 K2 - 

and the dimensionless natural frequency and damping rate  of the 

elastic mode, given by 
2k @," = 2 

(B-11) 

1 0  1 0  



It is usually convenient to put the equations in the form 

.. 
8 = Gj(ei,  €Ii, a, a)  , j = 1 * . .  3 

j 

.. 
a = G4(ei, O i l  a, h.) 

which can be achieved by algebraic recombination of Equations (B-9) .  

The transformation is valid only for 

e2 f y , n odd 

The result i s  

w0 sin e2(0, - uo)(-2K2 t 1 - K1)]B3 

! t tan e 2 ( e 2  - o o ) ( ~ l  t 

f 

2 
0 

I 
t 3w K~ sin e2  COS e2  

a 

(B-  12a) 

(B-12b) 
ii, t 3w 2 (  K1 K2 ) sin e2 cos e 2  = 0 

O + K 1  2 



r 1 6, t 3w0 2 cos e sin 02)] a 2 f 2 cos e 

( B - 1 2 ~ )  

2 2 2 21 

cos e 2  - O n w 0  i a  t ( -2&nwo)a  t ,-(e2 - wo)2 - 3w0 

(B-12d) 

B.8 Final Forms 

Equations (B-12) can be recast  in various forms depending on 

their use in the text. 

B. 8. 1 Linearized Dimensionless Form 

By considering O 2  as a small angle and neglecting its products 

with e , ,  9, and derivations in Equations (B-12), and introducing 
A 2  

T = w t as a new variable, 

form given in Equations ( 3  
0 

we obtain the linearized dimens 

2-1) and ( 3 . 2 - 2 )  of the text. 

onles s 
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B. 8. 2 Linearized Svmmetric Form 
~~~ ~ 

A more symmetric form is obtained by re-eliminating the K- 

parameters  from Equations ( 3 . 2 -  1) and ( 3 . 2 - 2 )  and introducing the 

new variable 

p = e l t a  

(the roll  angle of B") to replace a. 

of the text, in which the time variable is again t ra ther  than w t. 

The resul t  is Equations ( 3 . 2 -  18) 

0 

B. 8. 3 Form for Floquet Analysis 

For  numerical work using Kane's Floquet theory technique 

(Appendix C)  we define a column vector ( XJ by 

x1 = e l  x4 = b l  

xz = o 3  x5 = b 3  

Then Equations (B-11) can be rewrit ten in f i rs t -order  form a s  

with the auxiliary equations 

y = z  

(B-13) 

2 y = 28 (B-  14) 
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Equations (B- 12) and (B- 13) a r e  in the form required for the Floquet 

theory technique. Terms involving 8 can be eliminated from the 2 

matr ix  [W] by using Equations (B-14). 

B. 8.4 Equations for a Single Rigid Body 

The equations for  a single rigid body a r e  most  readily obtained by 

putting k = c = 0 in the symmetric form,  Equations (3 .2-  18). 

This yields Equations (3.  1-4) of the text. To derive equations in 

which the gravity torque is represented explicitly, we substitute 

Equations (B-3) into Equations (B-  I ) ,  neglect high-order t e r m s ,  and 

s e t  the constraint moment to zero,  yielding Equation ( 3 .  1-1) of the 

text. 



Appendix C. Results from Floquet Theory 

In this appendix we summarize some of the well-known properties 

of linear differential equations with periodic coefficients, drawing 

principally from References C. 1 and C. 2. Such systems have the 

form 

= [ A ( t ) ] ( 5 )  (C-1) 
where 

(x) 
[A(t)] 

is  a coordinate vector of n dimensions 

is an n-dimensional square matr ix  whose 
coefficients a r e  periodic in t ,  with period T 

,- 

Equations (B- 11) of Appendix B, a f te r  the modifications indicated in 

Section B. 8. 3 ,  have the form of Equation (C-  1). 

C.  1 Basis of Floquet Theorv Technique 

It is well known that Equations (C-1) have n linearly independent 

A square matrix [ X I  whose columns a r e  linearly indepen- solutions. 

dent solutions of Equation (C-1) is called a fundamental matr ix  for  

Equation (C- 1) and satisfies 

Since the columns a r e  linearly independent, the determinant 

Conversely, any matr ix  satisfying Equations (C-2)  and ( C - 3 )  is a 

fundamental matrix whose columns are  independent solutions. 

Premultiplication of Equation (C-  2 )  by a nonsingular constant 

matrix [L]  yields 
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So [.Y] is a lso a fundamental matrix and any two fundamental mat r ices  

[ X I ,  [Y] a r e  related through Equation (C-5) ,  for some [L] .  

If [X( t ) ]  is a fundamental matrix of Equation (C-1), then so is 

because 

[Xl(t)] = [X(t + T)) [A(t t T)] [X(t + T)]  = [Act)] [Xl(t)] 

using Equation (C-  1). The fact that 

can be proved easily but a lso follows from the obvious fact that a s e t  

of independent solutions of Equation ( C -  1) a r e  still  independent af ter  a 

translation in time. 

Equation ( C - 5 )  s a y s  that the fundamental matr ix  [X,] is related to  

the fundamental matr ix  [ X I  through 

for some nonsingular constant [M] , and that 

for another nonsingular constant [L:] and a n  a rb i t r a ry  fundamental 

matr ix  [Y].  Thus we have, f rom Equation (C-9) ,  
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Where [L] can be chosen arbi t rar i ly  as long as it is nonsingular. 

If [L] can be chosen to make 

a diagonal matrix,  the solution columns ( y . )  of [Y] will have the use-  

ful property 

h l  

where the X: (called characterist ic multipliers) a r e  eigenvalues of 
A 

[MI. The ( y i )  a r e  then called 
CI 

then means there  is a solution 

t ime and is therefore unstable. 

normal solutions. 

bil 1 

of Equation (C- 1) which grows with 

An a rb i t r a ry  se t  of initial conditions 

on Equation (C-  1) will, in  general, lead to a nonzero initial condition 

on the unstable solution and the whole system will grow without bound. 

The constant matrix [M] is nonsingular by hypothesis and can 

always be diagonalized a s  long as its eigenvalues a r e  distinct, which 

is invariably the case in practice. In the very special case  of repeated 

eigenvalues, it may be shown (Reference C. 2 )  that the system is stable 

if, for the repeated roots X ei ther 11.1 - 1 o r  if I X . 1  = 1, m = n - r 
j' J J 

where m is the multiplicity of the eigenvalue, n is the o rde r  of [MI, 

and r is the rank of [MJ. 
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C.  2 Kane's Numerical Implementation of Floquet Theory 

Equation ( C -  11) shows that the stability behavior of Equation ( C -  1) 

for  a l l  time can be determined from its behavior over a single period 

of the coefficients. Analytical determination of the A .  is difficult even 

for  systems of order  a s  low a s  two, Kane's procedure is to integrate 

each column of Equations (C- 1) over time T, start ing with initial con- 

1 

condition 

The unit matrix,  Then 

(C-12) 

using Equations (C-8)  and (C-12). 

the characterist ic multipliers. 

lem of Equations (B-  11) and Section 3. 3 involves six numerical inte- 

The eigenvalues of [X(T)] a r e  then 

The determination of X .  fo r  the prob- 
1 

grations of the six sca la r  equations ( C - l ) ,  and determination of s ix  

eigenvalues. In the present problem, the integrations were performed 

on the IBM 7094:': using the fourth-order Runge-Kutta integration 

f o rmula . 

In the case of interest ,  the elements of A(t) a r e  not known ex- 

plicitly but must be generated f rom the solutions of the pitch equation 

2 
w 

P e 2  + -z sin 202 = 0 
.. 

::: 
The assistance of the Computing Facility of the University of Cali- 

fornia, Los Angeles, i s  gratefully acknowledged. 
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Rather than use the known elliptic-integral solution, it is convenient to 

integrate this equation numerically, generating the coefficients for  

Equation ( C -  1) in the same computer program. 

C ,  3 Relation to Constant -Coefficient Solution 

In the special case where [A(t)] is constant, the solution of 

Equation (C- 1) has the form 

c. s,t 
, (C . )  constants ( 5 )  = z ( g i ) e  .- 1 

i 

s a r e  the character is t ic  roots of the system. The special  normal solu- 

tions which repeat themselves in the sense of Equation (C-  11) a r e  then 

i 

and the characterist ic multipliers a r e  

s . T  
1 A. = e 

1 
( C -  1 3 )  

where T,  the period, can be any positive num-er. 1 I 1 implies i 

the familiar constant coefficient instability condition 

Real ( s . )  * 0 
1 

s o  that the Floquet theory procedure is a useful generalization of 

familiar constant-coefficient techniques to the case of periodic 

coefficients. 


